cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006228 Expansion of e.g.f. exp(arcsin(x)).

Original entry on oeis.org

1, 1, 1, 2, 5, 20, 85, 520, 3145, 26000, 204425, 2132000, 20646925, 260104000, 2993804125, 44217680000, 589779412625, 9993195680000, 151573309044625, 2898026747200000, 49261325439503125, 1049085682486400000, 19753791501240753125, 463695871658988800000
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are expansions of sin(arcsinh(x)) and cos(arcsinh(x)).
Bisections are A101927 and A101928.
Row sums of A385343.
Cf. A002019.
Cf. A166741, A166748. - Jaume Oliver Lafont, Oct 24 2009

Programs

  • Maple
    a:= n-> n!*coeff(series(exp(arcsin(x)), x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 17 2018
  • Mathematica
    Distribute[ CoefficientList[ Series[ E^ArcSin[x], {x, 0, 21}], x] * Table[ n!, {n, 0, 21}]] (* Robert G. Wilson v, Feb 10 2004 *)
    With[{nn=30},CoefficientList[Series[Exp[ArcSin[x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Feb 26 2013 *)
    Table[FullSimplify[2^(n-2) * (Exp[Pi/2]-(-1)^n*Exp[-Pi/2]) * Gamma[(n-I)/2] * Gamma[(n+I)/2] / Pi], {n, 0, 20}] (* Vaclav Kotesovec, Nov 06 2014 *)
  • Maxima
    a(n):=(n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(binomial(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*binomial(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!,i,0,floor(j/2))*(-1)^(k-j),j,1,k))*binomial(k+n-1,n-1),k,1,n-m))/(m-1)!,m,1,n); /* Vladimir Kruchinin, Sep 12 2010 */

Formula

i even: a_i = Product_{j=1..i/2-1} 1 + 4j^2, i odd: a_i = Product_{j=1..(i-1)/2} 2 + 4j(j-1). - Cris Moore (moore(AT)santafe.edu), Jan 31 2001
a(0)=1, a(1)=1, a(n) = (1+(n-2)^2)*a(n-2) for n >= 2. Jaume Oliver Lafont, Oct 24 2009
a(n) = (n-1)!*sum((if n=m then 1 else if oddp(n-m) then 0 else sum((-1)^k*(sum(C(k,j)*2^(1-j)*sum((-1)^((n-m)/2-i)*C(j,i)*(j-2*i)^(n-m+j)/(n-m+j)!, i=0..floor(j/2))*(-1)^(k-j), j=1..k))*C(k+n-1,n-1), k=1..n-m))/(m-1)!, m=1..n), n>0. - Vladimir Kruchinin, Sep 12 2010
E.g.f.: exp(arcsin(x))=1+2z/(H(0)-z); H(k)=4k+2+z^2*(4k^2+8k+5)/H(k+1), where z=x/((1-x^2)^1/2); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
a(n) ~ (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 23 2013
a(n) = 2^(n-2) * (exp(Pi/2)-(-1)^n*exp(-Pi/2)) * GAMMA((n-I)/2) * GAMMA((n+I)/2) / Pi. - Vaclav Kotesovec, Nov 06 2014

Extensions

More terms from Christian G. Bower

A296728 Expansion of e.g.f. arcsin(x*cos(x)) (odd powers only).

Original entry on oeis.org

1, -2, -16, 8, 12672, 571264, -44351360, -12355211520, -452681248768, 478190483394560, 132554796040912896, -18854516962334277632, -27186884683859043123200, -5502410397289951851773952, 6273206188133923322747420672, 5389680791235134726930445369344
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*cos(x)) = x/1! - 2*x^3/3! - 16*x^5/5! + 8*x^7/7! + 12672*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSin[x Cos[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x*cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*cos(x)).

A296729 Expansion of e.g.f. arcsin(x*cosh(x)) (odd powers only).

Original entry on oeis.org

1, 4, 44, 1912, 156816, 21506816, 4420845376, 1271132964480, 487161448339712, 239980527068474368, 147742478026391141376, 111153314734461183924224, 100339775128577885016985600, 107037870347952811373977239552, 133204585741561810426003651444736
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*cosh(x)) = x/1! + 4*x^3/3! + 44*x^5/5! + 1912*x^7/7! + 156816*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcSin[x Cosh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x*cosh(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*cosh(x)).

A277354 a(n) = Product_{k=1..n} (4*k^2+1).

Original entry on oeis.org

1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

In general, for m>0, Product_{k=1..n} (m*k^2+1) is asymptotic to 2*m^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(m)) / exp(2*n).

Crossrefs

Programs

  • Mathematica
    Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
    Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016

Formula

a(n) = (-1)^(n+1) * A101928(n+2).
a(n) ~ 2^(2*n+2) * n^(2*n+1) * sinh(Pi/2) / exp(2*n).
a(n) = 2^(2*n+1) * |Gamma(1 + i/2 + n)|^2 * sinh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 10 2016
Showing 1-4 of 4 results.