cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101928 E.g.f. cos(arcsinh(x)) = sin(arccosh(x)) (even powers only).

Original entry on oeis.org

1, -1, 5, -85, 3145, -204425, 20646925, -2993804125, 589779412625, -151573309044625, 49261325439503125, -19753791501240753125, 9580588878101765265625, -5527999782664718558265625, 3742455852864014463945828125, -2937827844498251354197475078125, 2646982887892924470131925045390625
Offset: 1

Views

Author

Ralf Stephan, Dec 28 2004

Keywords

Comments

Absolute values are expansion of e.g.f. cosh(arcsin(x)).

Examples

			cos(arcsinh(x)) = 1 - x^2/2 + 5x^4/4! - 85x^6/6! + 3145x^8/8! - ...
		

Crossrefs

Bisection of A006228.

Programs

  • Maple
    seq(coeff(series(factorial(n)*cos(arcsinh(x)), x,n+1),x,n),n=0..40,2); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    Table[n!*SeriesCoefficient[Cos[ArcSinh[x]],{x,0,n}],{n,0,40,2}] (* Vaclav Kotesovec, Oct 23 2013 *)
    Flatten[{1, Table[(-1)^(n+1)*Product[4*k^2 + 1, {k, 1, n}], {n, 0, 12}]}] (* Vaclav Kotesovec, Oct 10 2016 *)

Formula

E.g.f.: cos(arcsinh(x)) = sqrt(1+x^2)*(1-x^2*(1-5*x^2/(G(0)+5*x^2))); G(k) = (k+2)*(2*k+3)-x^2*(2*k^2+6*k+5)+x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1);
For cosh(arcsin(x)) = sqrt(1-x^2)*(1 + x^2*(1 + 5*x^2/(G(0) - 5*x^2))); G(k) = x^2*(2*k^2+6*k+5) + (k+2)*(2*k+3) - x^2*(k+2)*(2*k+3)*(2*k^2+10*k+13)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2011
G.f.: 1 - x*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 + ((2*k+2)^2+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (-1)^(n+1) * sinh(Pi/2) * 2^(2*n-2) * n^(2*n-3) / exp(2*n). - Vaclav Kotesovec, Oct 23 2013
For n>1, a(n) = (-1)^(n+1) * A277354(n-2). - Vaclav Kotesovec, Oct 10 2016

A277352 a(n) = Product_{k=1..n} (2*k^2+1).

Original entry on oeis.org

1, 3, 27, 513, 16929, 863379, 63026667, 6239640033, 804913564257, 131200910973891, 26371383105752091, 6408246094697758113, 1851983121367652094657, 627822278143634060088723, 246734155310448185614868139, 111277104045012131712305530689
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

Guadalupe proves that a(n) is not square for n > 0. - Charles R Greathouse IV, Mar 16 2023

Crossrefs

Programs

  • Mathematica
    Table[Product[2*k^2+1, {k, 1, n}], {n, 0, 15}]
  • PARI
    a(n)=prod(k=1,n,2*k^2+1) \\ Charles R Greathouse IV, Mar 16 2023

Formula

a(n) ~ 2^(n+3/2) * n^(2*n+1) * sinh(Pi/sqrt(2)) / exp(2*n).

A277353 a(n) = Product_{k=1..n} (3*k^2+1).

Original entry on oeis.org

1, 4, 52, 1456, 71344, 5422144, 591013696, 87470027008, 16881715212544, 4119138511860736, 1239860692070081536, 451309291913509679104, 195416923398549691052032, 99271797086463243054432256, 58471088483926850159060598784, 39526455815134550707524964777984
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[3*k^2+1, {k, 1, n}], {n, 0, 15}]

Formula

a(n) ~ 2*3^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(3)) / exp(2*n).
Showing 1-3 of 3 results.