A354766 1/4 of the total number of integral quadruples with sum = n and sum of squares = n^2.
1, 2, 4, 2, 7, 8, 7, 2, 13, 14, 13, 8, 13, 14, 28, 2, 19, 26, 19, 14, 28, 26, 25, 8, 37, 26, 40, 14, 31, 56, 31, 2, 52, 38, 49, 26, 37, 38, 52, 14, 43, 56, 43, 26, 91, 50, 49, 8, 49, 74, 76, 26, 55, 80, 91, 14, 76, 62, 61, 56, 61, 62, 91, 2, 91, 104, 67, 38, 100, 98, 73, 26, 73, 74, 148, 38, 91, 104, 79, 14, 121, 86, 85, 56
Offset: 1
Examples
Solutions for n = 1: (1,0,0,0) and all permutations thereof. n=2: (2,0,0,0) and (1,1,1,-1). n=3: (3,0,0,0) and (2,2,-1,0). n=4: (4,0,0,0) and (2,2,2,-2). Eight solutions, so a(4) = 8/4 = 2. None are primitive, so A278085(4) = 0. n=5: (5,0,0,0) and (4,2,-2,1). 4+24 solutions, so a(5) = 28/4 = 7. 24 are primitive, so A278085(5) = 24/4 = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..650
Crossrefs
Programs
-
Maple
f:= proc(n) local d; add(g3(n-d, n^2 - d^2), d=-n .. n)/4 end proc: g3:= proc(x,y) option remember; local m,c; if x^2 > 3*y then return 0 fi; m:= floor(sqrt(y)); add(g2(x-c,y - c^2), c=- m.. m) end proc: g2:= proc(x,y) option remember; local v; v:= 2*y - x^2; if not issqr(v) then 0 elif v = 0 then 1 else 2 fi end proc: map(f, [$1..100]); # Robert Israel, Feb 16 2023
-
Mathematica
f[n_] := Sum[g3[n - d, n^2 - d^2], {d, -n, n}]/4 ; g3[x_, y_] := g3[x, y] = Module[{m}, If[x^2 > 3*y, 0, m = Floor[Sqrt[y]]; Sum[g2[x - c, y - c^2], {c, -m, m}]]]; g2[x_, y_] := g2[x, y] = Module[{v}, v = 2*y - x^2; Which[!IntegerQ@Sqrt[v], 0, v == 0, 1, True, 2]]; f /@ Range[100] (* Jean-François Alcover, Mar 09 2023, after Robert Israel *)
Comments