cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008610 Molien series of 4-dimensional representation of cyclic group of order 4 over GF(2) (not Cohen-Macaulay).

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 22, 30, 43, 55, 73, 91, 116, 140, 172, 204, 245, 285, 335, 385, 446, 506, 578, 650, 735, 819, 917, 1015, 1128, 1240, 1368, 1496, 1641, 1785, 1947, 2109, 2290, 2470, 2670, 2870, 3091, 3311, 3553, 3795, 4060, 4324, 4612, 4900, 5213, 5525, 5863
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of necklaces with 4 black beads and n white beads.
Also nonnegative integer 2 X 2 matrices with sum of elements equal to n, up to rotational symmetry.
The g.f. is Z(C_4,x), the 4-variate cycle index polynomial for the cyclic group C_4, with substitution x[i]->1/(1-x^i), i=1,...,4. Therefore by Polya enumeration a(n) is the number of cyclically inequivalent 4-necklaces whose 4 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_4,x). - Wolfdieter Lang, Feb 15 2005

Examples

			There are 10 inequivalent nonnegative integer 2 X 2 matrices with sum of elements equal to 4, up to rotational symmetry:
[0 0] [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[0 4] [1 3] [2 2] [3 1] [1 2] [2 1] [3 0] [1 1] [2 0] [1 1].
		

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 104.
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.

Crossrefs

Row n=2 of A343874.
Column k=4 of A037306 and A047996.

Programs

  • GAP
    a:=[1,1,3,5,10,14,22,30];; for n in [9..50] do a[n]:=2*a[n-1]-2*a[n-3] +2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-1]; od; a; # G. C. Greubel, Jan 31 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    1/(1-x)/(1-x^2)^2/(1-x^4)*(1+2*x^3+x^4);
    seq(coeff(series(%, x, n+1), x, n), n=0..40);
  • Mathematica
    k = 4; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1}, {1,1,3,5,10,14,22,30}, 50] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    a(n)=if(n,([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; -1,2,0,-2,2,-2,0,2]^n*[1;1;3;5;10;14;22;30])[1,1],1) \\ Charles R Greathouse IV, Oct 22 2015
    
  • PARI
    my(x='x+O('x^50)); Vec((1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A008610_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) ).list()
    A008610_list(50) # G. C. Greubel, Jan 31 2020
    

Formula

G.f.: (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) = (1-x+x^2+x^3)/((1-x)^2*(1-x^2)*(1-x^4)).
a(n) = (1/48)*(2*n^3 + 3*(-1)^n*(n + 4) + 12*n^2 + 25*n + 24 + 12*cos(n*Pi/2)). - Ralf Stephan, Apr 29 2014
G.f.: (1/4)*(1/(1-x)^4 + 1/(1-x^2)^2 + 2/(1-x^4)). - Herbert Kociemba, Oct 22 2016
a(n) = -A032801(-n), per formulae of Colin Barker (A032801) and R. Stephan (above). Also, a(n) - A032801(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating, (offset 0). - Gregory Gerard Wojnar, Jul 09 2022

Extensions

Comment and example from Vladeta Jovovic, May 18 2000

A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Array begins:
====================================================================
n\k | 0 1       2            3               4                 5
----+---------------------------------------------------------------
  0 | 1 1       1            1               1                 1 ...
  1 | 0 1       2            3               4                 5 ...
  2 | 0 1       6           24              70               165 ...
  3 | 0 1     140         4995           65824            489125 ...
  4 | 0 1   16456     10763361      1073758336       38147070625 ...
  5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
  • PARI
    T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4

Formula

T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.

A343875 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotations and reflections.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 4, 11, 3, 1, 0, 1, 8, 31, 24, 6, 1, 0, 1, 10, 84, 113, 55, 6, 1, 0, 1, 16, 198, 528, 410, 99, 10, 1, 0, 1, 20, 440, 2003, 2710, 1091, 181, 10, 1, 0, 1, 29, 904, 6968, 15233, 10488, 2722, 288, 15, 1, 0, 1, 35, 1766, 21593, 75258, 82704, 34399, 5806, 461, 15, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    4     8     10      16       20 ...
  3 | 1  3  11   31    84    198     440      904 ...
  4 | 1  3  24  113   528   2003    6968    21593 ...
  5 | 1  6  55  410  2710  15233   75258   331063 ...
  6 | 1  6  99 1091 10488  82704  563864  3376134 ...
  7 | 1 10 181 2722 34399 360676 3235551 25387944 ...
  ...
		

Crossrefs

Rows n=0..3 are A000007, A000012, A005232, A054343.
Columns 0..1 are A000012, A008805(n-1).
Cf. A054252 (binary case), A318795, A343097, A343874.

Programs

  • PARI
    U(n,s) = {(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)) + 2*s(1)^n*s(2)^(n*(n-1)/2) + 2*(s(1)^(n%2)*s(2)^(n\2))^n )/8}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A054771 Number of nonnegative integer 3 X 3 matrices with sum of elements equal to n, up to rotational symmetry.

Original entry on oeis.org

1, 3, 13, 43, 129, 327, 761, 1619, 3238, 6098, 10974, 18930, 31550, 50930, 80030, 122666, 183999, 270525, 390755, 555205, 777287, 1073297, 1463583, 1972533, 2630044, 3471508, 4539660, 5884564, 7565868, 9652788, 12226860, 15381924
Offset: 0

Views

Author

Vladeta Jovovic, May 18 2000

Keywords

Crossrefs

Row n=3 of A343874.

Formula

G.f.: (x^8 - 2*x^7 + 6*x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 6*x^2 - 2*x + 1)/((1 - x^4)^2*(1 - x^2)^2*(1 - x)^5).

A054773 Number of nonnegative integer 4 X 4 matrices with sum of elements equal to n, up to rotational symmetry.

Original entry on oeis.org

1, 4, 36, 204, 980, 3876, 13596, 42636, 122666, 326876, 817388, 1931540, 4346404, 9360540, 19390548, 38779380, 75136675, 141430680, 259292440, 463991880, 811990680, 1391975640, 2341057896, 3867821640, 6285222804, 10056336264
Offset: 0

Views

Author

Vladeta Jovovic, May 19 2000

Keywords

Crossrefs

Row n=4 of A343874.
Cf. A008610.

Formula

G.f.: (x^16 - 4*x^15 + 28*x^14 - 12*x^13 + 76*x^12 + 60*x^11 + 196*x^10 - 44*x^9 + 422*x^8 - 44*x^7 + 196*x^6 + 60*x^5 + 76*x^4 - 12*x^3 + 28*x^2 - 4*x + 1)/ ((x - 1)^16*(x + 1)^8*(x^2 + 1)^4).
Showing 1-5 of 5 results.