cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A047996 Triangle read by rows: T(n,k) is the (n,k)-th circular binomial coefficient, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 1, 6, 22
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) = number of necklaces with k black beads and n-k white beads (binary necklaces of weight k).
The same sequence arises if we take the table U(n,k) = number of necklaces with n black beads and k white beads and read it by antidiagonals (cf. A241926). - Franklin T. Adams-Watters, May 02 2014
U(n,k) is also equal to the number of ways to express 0 as a sum of k elements in Z/nZ. - Jens Voß, Franklin T. Adams-Watters, N. J. A. Sloane, Apr 30 2014 - May 05 2014. See link ("A Note on Modular Partitions and Necklaces") for proof.
The generating function for column k is given by the substitution x_j -> x^j/(1-x^j) in the cycle index of the Symmetric Group of order k. - R. J. Mathar, Nov 15 2018
From Petros Hadjicostas, Jul 12 2019: (Start)
Regarding the comments above by Voss, Adams-Watters, and Sloane, note that Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} A054535(d, v) * binomial((n + k)/d, k/d) = S(k, n, v).
This result was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 0) = A241926(n, k) = U(n, k) = T(n + k, k) (where T(n, k) is the current array). Also, S(n, k, 1) = A245558(n, k). See also Panyushev (2011) for more general results and for generating functions.
Finally, note that A054535(d, v) = c_d(v) = Sum_{s | gcd(d,v)} s*Moebius(d/s). These are the Ramanujan sums, which equal also the von Sterneck function c_d(v) = phi(d) * Moebius(d/gcd(d, v))/phi(d/gcd(d, v)). We have A054535(d, v) = A054534(v, d).
It would be interesting to see whether there is a proof of the results by Fredman (1975), Elashvili et al. (1999), and Panyushev (2011) for a general v using Molien series as it is done by Sloane (2014) for the case v = 0 (in which case, A054535(d, 0) = phi(d)). (Even though the columns of array A054535(d, v) start at v = 1, we may start the array at column v = 0 as well.)
(End)
U(n, k) is the number of equivalence classes of k-tuples of residues modulo n, identifying those that differ componentwise by a constant and those that differ by a permutation. - Álvar Ibeas, Sep 21 2021

Examples

			Triangle starts:
[ 0]  1,
[ 1]  1,  1,
[ 2]  1,  1,  1,
[ 3]  1,  1,  1,  1,
[ 4]  1,  1,  2,  1,  1,
[ 5]  1,  1,  2,  2,  1,  1,
[ 6]  1,  1,  3,  4,  3,  1,  1,
[ 7]  1,  1,  3,  5,  5,  3,  1,  1,
[ 8]  1,  1,  4,  7, 10,  7,  4,  1,  1,
[ 9]  1,  1,  4, 10, 14, 14, 10,  4,  1,  1,
[10]  1,  1,  5, 12, 22, 26, 22, 12,  5,  1, 1,
[11]  1,  1,  5, 15, 30, 42, 42, 30, 15,  5, 1, 1,
[12]  1,  1,  6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, ...
		

References

  • N. G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics (E. F. Beckenbach, ed.), John Wiley and Sons, New York, 1964, pp. 144-184 (implies g.f. for this triangle).
  • Richard Stanley, Enumerative Combinatorics, 2nd. ed., Vol 1, Chapter I, Problem 105, pp. 122 and 168, discusses the number of subsets of Z/nZ that add to 0. - N. J. A. Sloane, May 06 2014
  • J. Voß, Posting to Sequence Fans Mailing List, April 30, 2014.
  • H. S. Wilf, personal communication to N. J. A. Sloane, Nov., 1990.
  • See A000031 for many additional references and links.

Crossrefs

Row sums: A000031. Columns 0-12: A000012, A000012, A004526, A007997(n+5), A008610, A008646, A032191-A032197.
See A037306 and A241926 for essentially identical triangles.
See A245558, A245559 for a closely related array.

Programs

  • Maple
    A047996 := proc(n,k) local C,d; if k= 0 then return 1; end if; C := 0 ; for d in numtheory[divisors](igcd(n,k)) do C := C+numtheory[phi](d)*binomial(n/d,k/d) ; end do: C/n ; end proc:
    seq(seq(A047996(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; t[0, 0] = 1; Flatten[Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jul 19 2011, after given formula *)
  • PARI
    p(n) = if(n<=0, n==0, 1/n * sum(i=0,n-1, (x^(n/gcd(i,n))+1)^gcd(i,n) ));
    for (n=0,17, print(Vec(p(n)))); /* print triangle */
    /* Joerg Arndt, Sep 28 2012 */
    
  • PARI
    T(n,k) = if(n<=0, n==0, 1/n * sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d) ) );
    /* print triangle: */
    { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); }
    /* Joerg Arndt, Oct 21 2012 */

Formula

T(n, k) = (1/n) * Sum_{d | (n, k)} phi(d)*binomial(n/d, k/d).
T(2*n,n) = A003239(n); T(2*n+1,n) = A000108(n). - Philippe Deléham, Jul 25 2006
G.f. for row n (n>=1): (1/n) * Sum_{i=0..n-1} ( x^(n/gcd(i,n)) + 1 )^gcd(i,n). - Joerg Arndt, Sep 28 2012
G.f.: Sum_{n, k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{s>=1} (phi(s)/s)*log(1-x^s*(1+y^s)). - Petros Hadjicostas, Oct 26 2017
Product_{d >= 1} (1 - x^d - y^d) = Product_{i,j >= 0} (1 - x^i*y^j)^T(i+j, j), where not both i and j are zero. (It follows from Somos' infinite product for array A051168.) - Petros Hadjicostas, Jul 12 2019

Extensions

Name edited by Petros Hadjicostas, Nov 16 2017

A100157 Structured rhombic dodecahedral numbers (vertex structure 9).

Original entry on oeis.org

1, 14, 55, 140, 285, 506, 819, 1240, 1785, 2470, 3311, 4324, 5525, 6930, 8555, 10416, 12529, 14910, 17575, 20540, 23821, 27434, 31395, 35720, 40425, 45526, 51039, 56980, 63365, 70210, 77531, 85344, 93665, 102510, 111895, 121836, 132349, 143450, 155155, 167480
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis octahedral numbers (vertex structure 9) (Cf. A100171 = alternate vertex); and structured heptagonal anti-prism numbers (Cf. A100185 = structured anti-prisms).
If Y is a 2-subset of a 2n-set X then, for n>=2, a(n-1) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Let M(2n-1) be a (2n-1)x(2n-1) matrix whose (i,j)-entry equals i^2/(i^2+sqrt(-1)) if i=j and equals 1 otherwise. Then a(n) equals (-1)^(n+1) times the real part of prod(k^2+sqrt(-1),k=1...2n-1) times the determinant of M(2n-1). - John M. Campbell, Sep 07 2011
Principal diagonal of the convolution array A213752. - Clark Kimberling, Jun 20 2012
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Whieldon and Schuetz link). a(n)= Cat(n,4), so enumerates the number of (n+1)-gon partitions of a (4*(n-1)+2)-gon. Analogous series are A000326 (k=3) and A234043 (k=5). Also, a(n)= A006918(4n+1) = A008610(4n+1) = A053307(4n+1) with offset=0. - Tom Copeland, Oct 05 2014

Examples

			For n=4, sum( (4+i)^2, i=-3..3 ) = (4-3)^2+(4-2)^2+(4-1)^2+(4-0)^2+(4+1)^2+(4+2)^2+(4+3)^2 = 140 = a(4). - _Bruno Berselli_, Jul 24 2014
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Cf. A005915 = alternate vertex; A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(16*n^3-12*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*4), m=1..32) ; # Zerinvary Lajos, Jan 02 2008
  • PARI
    a(n)=(16*n^3-12*n^2+2*n)/6 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = (16*n^3 - 12*n^2 + 2*n)/6.
a(n) = n*(2*n-1)*(4*n-1)/3 = A000330(2*n-1). - Reinhard Zumkeller, Jul 06 2009
Sum_{n>=1} 1/(24*a(n)) = Pi/8-log(2)/2 = 0.046125491418751... [Jolley eq. 251]
G.f.: x*(1+10*x+5*x^2)/(x-1)^4. - R. J. Mathar, Oct 03 2011
a(n) = binomial(2*n+1,3) + binomial(2*n,3). - John Molokach, Jul 10 2013
a(n) = Sum_{i=-(n-1)..(n-1)} (n+i)^2. - Bruno Berselli, Jul 24 2014
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*x*(8*x^2 + 18*x + 3)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. (End)

A037306 Triangle T(n,k) read by rows: the number of compositions of n into k parts, modulo cyclic shifts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

Jens Voß, Jun 30 2001

Keywords

Comments

Triangle obtained from A047996 by dropping the first column (k=0), and row (n=0).
T(n, k) = number of different ways the number n can be expressed as ordered sums of k positive integers, counting only once those ordered sums that can be transformed into each other by a cyclic permutation.
These might be described as cyclic compositions, or more loosely as cyclic partitions. - N. J. A. Sloane, Sep 05 2012

Examples

			Triangle begins
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  2,  2,  1,  1;
  1,  3,  4,  3,  1,  1;
  1,  3,  5,  5,  3,  1,  1;
  1,  4,  7, 10,  7,  4,  1,  1;
  1,  4, 10, 14, 14, 10,  4,  1,  1;
  1,  5, 12, 22, 26, 22, 12,  5,  1,  1;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  1;
T(6,3) = 4, since there are 4 essentially different ways 1+1+4, 1+2+3, 1+3+2 and 2+2+2 of expressing 6 as a sum of 3 summands (all others can be obtained by cyclically permuting the summands in one of the above sums).
		

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

A047996 and A241926 are essentially identical to this entry.
Cf. A008965 (row sums), A000010, A007318, A027750, A215251, A004526 (column 2), A007997 (column 3), A008610 (column 4), A008646 (column 5), A032191 (column 6).
See A245558, A245559 for a closely related array.
See A052307 for compositions modulo cyclic shifts and reversal.

Programs

  • Haskell
    a037306 n k = div (sum $ map f $ a027750_row $ gcd n k) n where
       f d = a000010 d * a007318' (div n d) (div k d)
    a037306_row n = map (a037306 n) [1..n]
    a037306_tabl = map a037306_row [1..]
    -- Reinhard Zumkeller, Feb 06 2014
    
  • Maple
    A037306 := proc(n,k) local a,d; a := 0; for d in numtheory[divisors]( igcd(n,k)) do a := a+numtheory[phi](d)*binomial(n/d,k/d); end do: a/n; end proc:
    seq(seq(A037306(n,k), k=1..n), n=1..20); # R. J. Mathar, Jun 11 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; Flatten[Table[t[n, k], {n, 13}, {k, n}]] (* Jean-François Alcover, Sep 08 2011, after formula *)
    nn=15;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[Drop[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i/(1-x^i),{i,1,n}],{x,0,nn}],x],1],{n,1,nn}]]]//Grid  (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    T(n, k) = sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d, k/d))/n; \\ Michel Marcus, Feb 10 2016

Formula

T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d,k/d))/n, where phi = A000010 = Euler's totient function. Also T(n,k) = A047996(n,k). - Paul Weisenhorn, Apr 06 2011

Extensions

More terms from David Wasserman, Mar 11 2002
Comments, reference, example from Paul Weisenhorn, Dec 18 2010

A032191 Number of necklaces with 6 black beads and n-6 white beads.

Original entry on oeis.org

1, 1, 4, 10, 22, 42, 80, 132, 217, 335, 504, 728, 1038, 1428, 1944, 2586, 3399, 4389, 5620, 7084, 8866, 10966, 13468, 16380, 19811, 23751, 28336, 33566, 39576, 46376, 54132, 62832, 72675, 83661, 95988, 109668, 124936, 141778
Offset: 6

Views

Author

Keywords

Comments

The g.f. is Z(C_6,x)/x^6, the 6-variate cycle index polynomial for the cyclic group C_6, with substitution x[i]->1/(1-x^i), i=1,...,6. Therefore by Polya enumeration a(n+6) is the number of cyclically inequivalent 6-necklaces whose 6 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_6,x). Note the equivalence of this formulation with the one given as this sequence's name: start with a black 6-necklace (all 6 beads have labels 0). Insert after each of the 6 black beads k white ones if the label was k and then disregard the labels. - Wolfdieter Lang, Feb 15 2005
The g.f. of the CIK[k] transform of the sequence (b(n): n>=1), which has g.f. B(x) = Sum_{n>=1} b(n)*x^n, is CIK[k](x) = (1/k)*Sum_{d|k} phi(d)*B(x^d)^{k/d}. Here, k = 6, b(n) = 1 for all n >= 1, and B(x) = x/(1-x), from which we get another proof of the g.f.s given below. - Petros Hadjicostas, Jan 07 2018

Examples

			From _Petros Hadjicostas_, Jan 07 2018: (Start)
We explain why a(8) = 4. According to the theory of transforms by C. G. Bower, given in the weblink above, a(8) is the number of ways of arranging 6 indistinct unlabeled boxes (that may differ only in their size) as a necklace, on a circle, such that the total number of balls in all of them is 8. There are 4 ways for doing that on a circle: 311111, 221111, 212111, and 211211.
To translate these configurations of boxes into necklaces with 8 beads, 6 of them black and 2 of them white, we modify an idea given above by W. Lang. We replace each box that has m balls with a black bead followed by m-1 white beads. The four examples above become BWWBBBBB, BWBWBBBB, BWBBWBBB, and BWBBBWBB.
(End)
		

Crossrefs

Column k=6 of A047996.

Programs

  • Mathematica
    k = 6; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 6 ]" (necklace, indistinct, unlabeled, 6 parts) transform of 1, 1, 1, 1, ...
G.f.: (1-x+x^2+4*x^3+2*x^4+3*x^6+x^7+x^8)/((1-x)^6*(1+x)^3*(1+x+x^2)^2*(1-x+x^2)) (conjectured). - Ralf Stephan, May 05 2004
G.f.: (x^6)*(1-x+x^2+4*x^3+2*x^4+3*x^6+x^7+x^8)/((1-x)^2*(1-x^2)^2*(1-x^3)*(1-x^6)). (proving the R. Stephan conjecture (with the correct offset) in a different version; see Comments entry above). - Wolfdieter Lang, Feb 15 2005
G.f.: (1/6)*x^6*((1-x)^(-6)+(1-x^2)^(-3)+2*(1-x^3)^(-2)+2*(1-x^6)^(-1)). - Herbert Kociemba, Oct 22 2016

A032192 Number of necklaces with 7 black beads and n-7 white beads.

Original entry on oeis.org

1, 1, 4, 12, 30, 66, 132, 246, 429, 715, 1144, 1768, 2652, 3876, 5538, 7752, 10659, 14421, 19228, 25300, 32890, 42288, 53820, 67860, 84825, 105183, 129456, 158224, 192130, 231880, 278256, 332112, 394383, 466089, 548340
Offset: 7

Views

Author

Keywords

Comments

"CIK[ 7 ]" (necklace, indistinct, unlabeled, 7 parts) transform of 1, 1, 1, 1, ...
The g.f. is Z(C_7,x)/x^7, the 7-variate cycle index polynomial for the cyclic group C_7, with substitution x[i]->1/(1-x^i), i=1,...,7. Therefore by Polya enumeration a(n+7) is the number of cyclically inequivalent 7-necklaces whose 7 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_7,x) and the comment in A032191 on the equivalence of this problem with the one given in the 'Name' line. - Wolfdieter Lang, Feb 15 2005
From Petros Hadjicostas, Dec 08 2017: (Start)
For p prime, if a_p(n) is the number of necklaces with p black beads and n-p white beads, then (a_p(n): n>=1) = CIK[p](1, 1, 1, 1, ...). Since CIK[k](B(x)) = (1/k)*Sum_{d|k} phi(d)*B(x^d)^{k/d} with k = p and B(x) = x + x^2 + x^3 + ... = x/(1-x), we get Sum_{n>=1} a_p(n)*x^n = ((p-1)/(1 - x^p) + 1/(1 - x)^p)*x^p/p, which is Herbert Kociemba's general formula for the g.f. when p is prime.
We immediately get a_p(n) = ((p-1)/p)*I(p|n) + (1/p)*C(n-1,p-1) = ((p-1)/p)*I(p|n) + (1/n)*C(n,p) = ceiling(C(n,p)/n), which is a generalization of the conjecture made by N. J. A. Sloane and Wolfdieter Lang. (Here, I(condition) = 1 if the condition holds, and 0 otherwise. Also, as usual, for integers n and k, C(n,k) = 0 if 0 <= n < k.)
Since the sequence (a_p(n): n>=1) is column k = p of A047996(n,k) = T(n,k), we get from the documentation of the latter sequence that a_p(n) = T(n, p) = (1/n)*Sum_{d|gcd(n,p)} phi(d)*C(n/d, p/d), from which we get another proof of the formulae for a_p(n).
(End)

Crossrefs

Programs

  • Mathematica
    k = 7; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    DeleteCases[CoefficientList[Series[x^7 (x^6 - 5 x^5 + 13 x^4 - 17 x^3 + 13 x^2 - 5 x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (1 - x)^7), {x, 0, 41}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)

Formula

Empirically this is ceiling(C(n, 7)/n). - N. J. A. Sloane
G.f.: x^7*(x^6 - 5*x^5 + 13*x^4 - 17*x^3 + 13*x^2 - 5*x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(1 - x)^7). - Gael Linder (linder.gael(AT)wanadoo.fr), Jan 13 2005
G.f.: (6/(1 - x^7) + 1/(1 - x)^7)*x^7/7; in general, for a necklace with p black beads and p prime, the g.f. is ((p-1)/(1 - x^p) + 1/(1 - x)^p)*x^p/p. - Herbert Kociemba, Oct 15 2016
a(n) = ceiling(binomial(n, 7)/n) (conjecture by Wolfdieter Lang).
a(n) = (6/7)*I(7|n) + (1/7)*C(n-1,6) = (6/7)*I(7|n) + (1/n)*C(n,7), where I(condition) = 1 if the condition holds, and = 0 otherwise. - Petros Hadjicostas, Dec 08 2017

A343874 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotational symmetry.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 5, 13, 4, 1, 0, 1, 10, 43, 36, 7, 1, 0, 1, 14, 129, 204, 85, 9, 1, 0, 1, 22, 327, 980, 735, 171, 13, 1, 0, 1, 30, 761, 3876, 5145, 2109, 313, 16, 1, 0, 1, 43, 1619, 13596, 29715, 20610, 5213, 528, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    5    10     14      22       30 ...
  3 | 1  3  13   43   129    327     761     1619 ...
  4 | 1  4  36  204   980   3876   13596    42636 ...
  5 | 1  7  85  735  5145  29715  148561   657511 ...
  6 | 1  9 171 2109 20610 164502 1124382  6744582 ...
  7 | 1 13 313 5213 67769 717509 6457529 50732669 ...
  ...
		

Crossrefs

Rows n=0..4 are A000007, A000012, A008610, A054771, A054773.
Columns k=0..1 are A000012, A004652.
Cf. A054772 (binary case), A318795, A343095, A343875.

Programs

  • PARI
    U(n,s)={(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)))/4}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A032193 Number of necklaces with 8 black beads and n-8 white beads.

Original entry on oeis.org

1, 1, 5, 15, 43, 99, 217, 429, 810, 1430, 2438, 3978, 6310, 9690, 14550, 21318, 30667, 43263, 60115, 82225, 111041, 148005, 195143, 254475, 328756, 420732, 534076, 672452, 840652, 1043460, 1287036, 1577532, 1922741
Offset: 8

Views

Author

Keywords

Comments

The g.f. is Z(C_8,x)/x^8, the 8-variate cycle index polynomial for the cyclic group C_8, with substitution x[i]->1/(1-x^i), i=1,...,8. Therefore by Polya enumeration a(n+8) is the number of cyclically inequivalent 8-necklaces whose 8 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_8,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005
From Petros Hadjicostas, Aug 31 2018: (Start)
The CIK[k] transform of sequence (c(n): n>=1) has generating function A_k(x) = (1/k)*Sum_{d|k} phi(d)*C(x^d)^{k/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n>=1).
When c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (x^k/k)*Sum_{d|k} phi(d)*(1-x^d)^{-k/d}, which is the g.f. of the number a_k(n) of necklaces of n beads of 2 colors with k of them black and n-k of them white.
Using Taylor expansions, we can easily prove that a_k(n) = (1/k)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d), which is Robert A. Russell's formula in the Mathematica code below.
For this sequence k = 8, and thus we get the formulae below.
(End)

Crossrefs

Programs

  • Mathematica
    k = 8; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[Series[1/8*(1/(1 - x)^8 + 1/(1 - x^2)^4 + 2/(1 - x^4)^2 + 4/(1 - x^8)^1),{x, 0, 30}], x] (* Stefano Spezia, Sep 01 2018 *)

Formula

"CIK[ 8 ]" (necklace, indistinct, unlabeled, 8 parts) transform of 1, 1, 1, 1...
G.f.: (x^8)*(1-3*x+5*x^2+3*x^3-4*x^4+4*x^5+6*x^6-4*x^7+7*x^8-x^9+x^10+x^11)/((1-x)^4*(1-x^2)^2*(1-x^4)*(1-x^8)).
G.f.: 1/8*x^8*(1/(1-x)^8+1/(1-x^2)^4+2/(1-x^4)^2+4/(1-x^8)^1). - Herbert Kociemba, Oct 22 2016
a(n) = (1/8)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d - 1, 8/d - 1) = (1/n)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d, 8/d). - Petros Hadjicostas, Aug 31 2018

A032194 Number of necklaces with 9 black beads and n-9 white beads.

Original entry on oeis.org

1, 1, 5, 19, 55, 143, 335, 715, 1430, 2704, 4862, 8398, 14000, 22610, 35530, 54484, 81719, 120175, 173593, 246675, 345345, 476913, 650325, 876525, 1168710, 1542684, 2017356, 2615104, 3362260, 4289780, 5433736, 6835972
Offset: 9

Views

Author

Keywords

Comments

The g.f. is Z(C_9,x)/x^9, the 9-variate cycle index polynomial for the cyclic group C_9, with substitution x[i]->1/(1-x^i), i=1,...,9. Therefore by Polya enumeration a(n+9) is the number of cyclically inequivalent 9-necklaces whose 9 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_9,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 9; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 9 ]" (necklace, indistinct, unlabeled, 9 parts) transform of 1, 1, 1, 1...
G.f.: (x^9)*(1-5*x+14*x^2-18*x^3+21*x^4-21*x^5+25*x^6 -21*x^7 +21*x^8 -18*x^9 +14*x^10 -5*x^11 +x^12) / ((1-x)^6*(1-x^3)^2*(1-x^9)).
G.f.: (1/9)*x^9*(1/(1-x)^9+2/(1-x^3)^3+6/(1-x^9)^1). - Herbert Kociemba, Oct 22 2016

A032801 Number of unordered sets a, b, c, d of distinct integers from 1..n such that a+b+c+d = 0 (mod n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 5, 9, 14, 22, 30, 42, 55, 73, 91, 115, 140, 172, 204, 244, 285, 335, 385, 445, 506, 578, 650, 734, 819, 917, 1015, 1127, 1240, 1368, 1496, 1640, 1785, 1947, 2109, 2289, 2470, 2670, 2870, 3090, 3311, 3553, 3795, 4059, 4324, 4612, 4900, 5212, 5525
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jul 12 2019: (Start)
By reading carefully the proof of Lemma 5.1 (pp. 65-66) in Barnes (1959), we see that he actually proved a general result (even though he does not state it in the lemma). For 1 <= k <= n, let T(n, k) be the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = 0 (mod n). The proof of Lemma 5.1 in the paper implies that T(n, k) = (1/n) * Sum_{s | gcd(n, k)} (-1)^(k - (k/s)) * phi(s) * binomial(n/s, k/s).
For fixed k >= 1, the g.f. of the sequence (T(n, k): n >= 1) (with T(n, k) = 0 for 1 <= n < k) is (x^k/k) * Sum_{s|k} phi(s) * (-1)^(k - (k/s)) / (1 - x^s)^(k/s).
For k = 4, we get T(n, k=4) = (1/n) * Sum_{d | gcd(n, 4)} (-1)^(4/s) * phi(d) * binomial(n/d, 4/d), which agrees with Barnes' 3-part formula in Lemma 5.1 and with the formula in N. J. A. Sloane's Maple program below. It also agrees with Colin Barker's formula below.
For k = 4, the g.f. is (x^4/4) * Sum_{s|4} phi(s) * (-1)^(4/s) /(1 - x^s)^(4/s), which agrees with Herbert Kociemba's g.f. below.
Barnes' (1959) formula is a special case of Theorem 4 (p. 66) in Ramanathan (1944). If R(n, k, v) is the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = v (mod n), then he proved that R(n, k, v) = (1/n) * Sum_{s | gcd(n,k)} (-1)^(k - (k/s)) * binomial(n/s, k/s) * C_s(v), where C_s(v) = A054533(s, v) is Ramanujan's sum (even though it was discovered first around 1900 by the Austrian mathematician R. D. von Sterneck).
Because C_s(v = 0) = phi(s), we get Barnes' (implicit) result; i.e., R(n, k, v=0) = T(n, k) and a(n) = R(n, k=4, v=0) = T(n, k=4).
For k=2, we have R(n, k=2, v=0) = T(n, k=2) = A004526(n-1) for n >= 1. For k=3, we have R(n, k=3, v=0) = T(n, k=3) = A058212(n) for n >= 1. For k=5, we have R(n, k=5, v=0) = T(n, k=5) = A008646(n-5) for n >= 5.
(End)

References

  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.

Crossrefs

Programs

  • Maple
    f := n-> if n mod 2 <> 0 then (n-1)*(n-2)*(n-3)/24 elif n mod 4 = 0 then (n-4)*(n^2-2*n+6)/24 else (n-2)*(n^2-4*n+6)/24; fi;
  • Mathematica
    CoefficientList[Series[(x^3 / 4) (1 / (1 - x)^4 + 1 / (1 - x^2)^2 - 2 / (1 - x^4)), {x, 0, 60}],x] (* Vincenzo Librandi, Jul 13 2019 *)

Formula

G.f.: x^5*(1+x-x^2+x^3)/((-1+x)^4*(1+x)^2*(1+x^2)). - Herbert Kociemba, Oct 22 2016
a(n) = (-6 * (4 + 2*(-1)^n + (-i)^n + i^n) + (25 + 3*(-1)^n)*n - 12*n^2 + 2*n^3)/48, where i = sqrt(-1). - Colin Barker, Oct 23 2016
a(n) = -A008610(-n), per formulae of Ralf Stephan (A008610) and C. Barker (above). Also, A008610(n) - a(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating (offset 0). - Gregory Gerard Wojnar, Jul 09 2022

Extensions

Offset changed by David A. Corneth, Oct 23 2016

A347972 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_5)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 19, 56, 19, 1, 1, 33, 289, 289, 33, 1, 1, 55, 1358, 4836, 1358, 55, 1, 1, 85, 5771, 80605, 80605, 5771, 85, 1, 1, 128, 22594, 1271870, 5525686, 1271870, 22594, 128, 1, 1, 183, 81802, 18478460, 372302962, 372302962, 18478460, 81802, 183, 1
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5    6
      -------------------------------
n=0:  1
n=1:  1    1
n=2:  1    4    1
n=3:  1    9    9    1
n=4:  1   19   56   19    1
n=5:  1   33  289  289   33    1
n=6:  1   55 1358 4836 1358   55    1
There are 6 = A022169(2, 1) one-dimensional subspaces in (F_5)^2. By coordinate swap, <(0, 1)> is identified with <(1, 0)> and <(1, 2)> with <(1, 3)>, while <(1, 1)> and <(1, 4)> rest invariant. Hence, T(2, 1) = 4.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A008610(n).
Showing 1-10 of 16 results. Next