cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319616 Number of non-isomorphic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1}, {2}}
3: {{1,1,1}}
   {{1}, {2,2}}
   {{2}, {1,2}}
   {{1}, {2},{3}}
4: {{1,1,1,1}}
   {{1}, {1,2,2}}
   {{1}, {2,2,2}}
   {{2}, {1,2,2}}
   {{1,1}, {2,2}}
   {{1,2}, {1,2}}
   {{1,2}, {2,2}}
   {{1}, {1}, {2,3}}
   {{1}, {2}, {3,3}}
   {{1}, {3}, {2,3}}
   {{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0]   [1 0]   [0 1]   [2 0]   [1 1]   [1 1]
. [1 2]   [0 3]   [1 2]   [0 2]   [1 1]   [0 2]
.
. [1 0 0]   [1 0 0]   [1 0 0]
. [1 0 0]   [0 1 0]   [0 0 1]
. [0 1 1]   [0 0 2]   [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for M.
    a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
    
  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024

A057150 Triangle read by rows: T(n,k) = number of k X k binary matrices with n ones, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 5, 2, 1, 0, 0, 4, 11, 2, 1, 0, 0, 3, 21, 14, 2, 1, 0, 0, 1, 34, 49, 15, 2, 1, 0, 0, 1, 33, 131, 69, 15, 2, 1, 0, 0, 0, 33, 248, 288, 79, 15, 2, 1, 0, 0, 0, 19, 410, 840, 420, 82, 15, 2, 1, 0, 0, 0, 14, 531, 2144, 1744, 497, 83, 15, 2, 1
Offset: 1

Views

Author

Vladeta Jovovic, Aug 14 2000

Keywords

Comments

Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and k vertices. - Gus Wiseman, Nov 14 2018

Examples

			[1], [0,1], [0,1,1], [0,1,2,1], [0,0,5,2,1], [0,0,4,11,2,1], ...;
There are 8 square binary matrices with 5 ones, with no zero rows or columns, up to row and column permutation: 5 of size 3 X 3:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 1] [0 1 1] [1 1 0]
[1 1 1] [1 1 1] [1 0 1] [1 1 0] [1 1 0]
2 of size 4 X 4:
[0 0 0 1] [0 0 0 1]
[0 0 0 1] [0 0 1 0]
[0 0 1 0] [0 1 0 0]
[1 1 0 0] [1 0 0 1]
and 1 of size 5 X 5:
[0 0 0 0 1]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
[1 0 0 0 0].
From _Gus Wiseman_, Nov 14 2018: (Start)
Triangle begins:
   1
   0   1
   0   1   1
   0   1   2   1
   0   0   5   2   1
   0   0   4  11   2   1
   0   0   3  21  14   2   1
   0   0   1  34  49  15   2   1
   0   0   1  33 131  69  15   2   1
   0   0   0  33 248 288  79  15   2   1
Non-isomorphic representatives of the multiset partitions counted in row 6 {0,0,4,11,2,1} are:
  {{12}{13}{23}}  {{1}{1}{1}{234}}  {{1}{2}{3}{3}{45}}  {{1}{2}{3}{4}{5}{6}}
  {{1}{23}{123}}  {{1}{1}{24}{34}}  {{1}{2}{3}{5}{45}}
  {{13}{23}{23}}  {{1}{1}{4}{234}}
  {{3}{23}{123}}  {{1}{2}{34}{34}}
                  {{1}{3}{24}{34}}
                  {{1}{3}{4}{234}}
                  {{1}{4}{24}{34}}
                  {{1}{4}{4}{234}}
                  {{2}{4}{12}{34}}
                  {{3}{4}{12}{34}}
                  {{4}{4}{12}{34}}
(End)
		

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := M[m, n, k] = Module[{s = 0}, Do[Do[s += permcount[p]* permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, k, n] - 2*M[k, k - 1, n] + M[k - 1, k - 1, n];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
  • PARI
    \\ See A321609 for M.
    T(n,k) = M(k,k,n) - 2*M(k,k-1,n) + M(k-1,k-1,n); \\ Andrew Howroyd, Nov 14 2018

Extensions

Duplicate seventh row removed by Gus Wiseman, Nov 14 2018

A054974 Number of nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.

Original entry on oeis.org

1, 2, 6, 9, 17, 23, 36, 46, 65, 80, 106, 127, 161, 189, 232, 268, 321, 366, 430, 485, 561, 627, 716, 794, 897, 988, 1106, 1211, 1345, 1465, 1616, 1752, 1921, 2074, 2262, 2433, 2641, 2831, 3060, 3270, 3521, 3752, 4026, 4279, 4577, 4853, 5176, 5476, 5825, 6150
Offset: 2

Views

Author

Vladeta Jovovic, May 28 2000

Keywords

Comments

From Gus Wiseman, Jan 22 2019: (Start)
Also the number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices and exactly 2 (not necessarily distinct) edges. For example, non-isomorphic representatives of the a(2) = 1 through a(5) = 9 multiset partitions are:
{{1}{2}} {{1}{22}} {{1}{122}} {{11}{122}}
{{2}{12}} {{11}{22}} {{1}{1222}}
{{12}{12}} {{11}{222}}
{{1}{222}} {{12}{122}}
{{12}{22}} {{1}{2222}}
{{2}{122}} {{12}{222}}
{{2}{1122}}
{{2}{1222}}
{{22}{122}}
(End)

Examples

			There are 9 nonnegative integer 2 X 2 matrices with no zero rows or columns and with sum of elements equal to 5, up to row and column permutation:
[0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [0 2] [0 3] [1 1]
[1 3] [2 2] [3 1] [4 0] [1 2] [2 1] [3 0] [1 1] [1 2].
		

Crossrefs

Programs

  • Maple
    gf := -x^2*(x^3-x^2-1)/((x^2-1)^2*(x-1)^2): s := series(gf, x, 101): for i from 2 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • PARI
    Vec(-x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2) + O(x^60)) \\ Colin Barker, Jan 16 2017

Formula

G.f.: -x^2*(x^3-x^2-1) / ((x^2-1)^2*(x-1)^2).
From Colin Barker, Jan 16 2017: (Start)
a(n) = (6 - 6*(-1)^n + (9*(-1)^n-17)*n + 12*n^2 + 2*n^3) / 48.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)

Extensions

More terms from James Sellers, May 29 2000

A054975 Number of nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to n, up to row and column permutation.

Original entry on oeis.org

1, 3, 13, 38, 97, 217, 453, 868, 1585, 2756, 4606, 7440, 11679, 17849, 26674, 39060, 56144, 79387, 110575, 151904, 206063, 276332, 366561, 481484, 626586, 808431, 1034636, 1314242, 1657500, 2076601, 2585262, 3199504, 3937370, 4819788
Offset: 3

Views

Author

Vladeta Jovovic, May 28 2000

Keywords

Examples

			There are 3 nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to 4, up to row and column permutation:
[0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 0]
[1 1 0] [1 0 1] [2 0 0].
		

Crossrefs

Column k=3 of A321615.
Cf. A052365.

Programs

  • Maple
    gf := x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x+1)^3*(x - 1)^5): s := series(gf, x, 101): for i from 3 to 100 do printf(`%d,`,coeff(s,x,i)) od:

Formula

G.f.: x^3*(x^14 - 2*x^13 + x^12 - 3*x^11 + 4*x^10 - 3*x^9 + 4*x^8 - x^7 - 4*x^6 + 2*x^5 - x^4 - 5*x^3 - 4*x^2 - 1)/((x^4 - x^3 + x - 1)*(x^3 - 1)^3*(x + 1)^3*(x - 1)^5).

Extensions

More terms from James Sellers, May 29 2000
Showing 1-4 of 4 results.