cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 18 2018

Examples

			Triangle begins:
    1
    0  1
    0  1    1
    0  1    2    1
    0  1    6    3    1
    0  1    9   13    3    1
    0  1   17   38   20    3    1
    0  1   23   97   82   23    3    1
    0  1   36  217  311  126   24    3    1
    0  1   46  453  968  624  151   24    3    1
    0  1   65  868 2825 2637  933  162   24    3    1
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 24 2018, from PARI *)
  • PARI
    \\ See A318795 for M.
    T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
    
  • PARI
    \\ See A340652 for G.
    T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024

Extensions

Column k=0 inserted by Andrew Howroyd, Jan 17 2024

A055007 Number of nonnegative integer 4 X 4 matrices with no zero rows or columns and with sum of elements equal to n.

Original entry on oeis.org

1, 0, 0, 0, 24, 528, 4648, 26224, 112666, 401424, 1246000, 3476368, 8905432, 21266208, 47875272, 102482048, 210000931, 414160240, 789572072, 1460372624, 2628456428, 4615495808, 7924479264, 13328517504, 21997272036, 35674700896, 56926058920, 89477437120
Offset: 0

Views

Author

Vladeta Jovovic, May 30 2000

Keywords

Crossrefs

Formula

Number of nonnegative integer p X q matrices with no zero rows or columns and with sum of elements equal to n is Sum_{k=0...q} (-1)^k*C(q, k)*m(p, q-k, n) where m(p, q, n)=Sum_{k=0..p} (-1)^k*C(p, k)*C((p-k)*q+n-1, n).
For p = q = 4 we get a(n) = (1/15!)*(n^15 + 120*n^14 + 6580*n^13 + 218400*n^12 + 4637542*n^11 + 61261200*n^10 + 423591740*n^9 + 164392800*n^8 - 17247717487*n^7 - 47940252360*n^6 + 346941238280*n^5 + 557885764800*n^4 - 4897231459056*n^3 + 8643549191040*n^2 - 5894285241600*n + 1307674368000).
G.f.: -(16*x^15 -192*x^14 +1040*x^13 -3356*x^12 +7200*x^11 -10952*x^10 +12544*x^9 -11712*x^8 +9664*x^7 -7088*x^6 +4224*x^5 -1844*x^4 +560*x^3 -120*x^2 +16*x -1) / (x -1)^16. - Colin Barker, Jul 11 2013

Extensions

More terms from James Sellers, May 31 2000

A055005 Number of nonnegative integer 3 X 3 matrices with no zero rows or columns and with sum of elements equal to n.

Original entry on oeis.org

1, 0, 0, 6, 63, 306, 1038, 2844, 6750, 14437, 28521, 52911, 93258, 157509, 256581, 405171, 622719, 934542, 1373158, 1979820, 2806281, 3916812, 5390496, 7323822, 9833604, 13060251, 17171415, 22366045, 28878876, 36985383, 47007231
Offset: 0

Views

Author

Vladeta Jovovic, May 30 2000

Keywords

Crossrefs

Programs

  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,-9,36,-84,126,-126,84,-36,9]^n*[1;0;0;6;63;306;1038;2844;6750])[1,1] \\ Charles R Greathouse IV, Aug 14 2023

Formula

Number of nonnegative integer p X q matrices with no zero rows or columns and with sum of elements equal to n is Sum_{k=0...q} (-1)^k*C(q, k)*m(p, q-k, n) where m(p, q, n)=Sum_{k=0..p} (-1)^k*C(p, k)*C((p-k)*q+n-1, n).
For p=q=3 we get a(n)=C(n + 8, 8) - 6*C(n + 5, 5) + 9*C(n + 3, 3) + 6*C(n + 2, 2) - 18*C(n + 1, 1) + 9=(1/8!)*(n^8 + 36*n^7 + 546*n^6 + 2520*n^5 - 7791*n^4 - 43596*n^3 + 148364*n^2 - 140400*n + 40320).
G.f.: -(9*x^8-54*x^7+132*x^6-171*x^5+135*x^4-78*x^3+36*x^2-9*x+1) / (x-1)^9. - Colin Barker, Jul 13 2013
Showing 1-3 of 3 results.