cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A003468 Number of minimal 3-covers of a labeled n-set.

Original entry on oeis.org

1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3

Views

Author

Keywords

Comments

This is also the fourth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also the Sheffer comments in A193685. - Wolfdieter Lang, Oct 08 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
  • Maple
    A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)

Formula

G.f.: x^3/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)). - N. J. A. Sloane, May 12 1994, corrected by Vaclav Kotesovec, Nov 19 2012
E.g.f.: (exp(4*x)*(exp(x) - 1)^3)/6. More generally, e.g.f. for number of minimal m-covers of a labeled n-set is (exp((2^m - m - 1)*x)*(exp(x) - 1)^m)/m!. - Vladeta Jovovic, May 09 2004
If we define f(m, j, x) = sum(binomial(m, k)*stirling2(k, j)*x^(m - k),k = j .. m) then a(n) = f(n, 3, 4), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 7^n/6 - 6^n/2 + 5^n/2 - 4^n/6. - Vaclav Kotesovec, Nov 19 2012

A057669 Triangle T(n,k) of number of minimal 3-covers of an unlabeled n+3-set that cover k points of that set uniquely (k=3,..,n+3).

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 7, 6, 3, 11, 13, 14, 9, 4, 16, 22, 26, 21, 13, 5, 23, 34, 44, 40, 31, 17, 7, 31, 50, 68, 68, 59, 41, 23, 8, 41, 70, 100, 106, 101, 79, 55, 28, 10, 53, 95, 140, 157, 158, 136, 106, 68, 35, 12, 67, 125, 190, 221, 234, 214, 182, 132, 85, 42, 14, 83, 161
Offset: 0

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Comments

Row sums give A005783.

Examples

			[1], [2, 1], [4, 3, 2], [7, 7, 6, 3], ...
There are 7 minimal 3-covers of an unlabeled 6-set that cover 3 points of that set uniquely: {{1}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
		

Crossrefs

Formula

T(n, k) = b(n, k)-b(n-1, k); b(n, k) = coefficient of x^k in x^3/6*(Z(S_n; 5+3*x, 5+3*x^2, ...)+3*Z(S_n; 3+x, 5+3*x^2, 3+x^3, 5+3*x^4, ...)+2*Z(S_n; 2, 2, 5+3*x^3, 2, 2, 5+3*x^6, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A055066 Number of 7-covers of an unlabeled n-set.

Original entry on oeis.org

1, 7, 62, 664, 8609, 127415, 2004975, 31500927, 474504448, 6708348262, 88249739792, 1078567590128, 12269901302433, 130370516668917, 1298891291366245, 12182760243381355, 107979270564656625, 907568508195185203, 7256984238345563764, 55365443728411530716, 404091280028746802188
Offset: 0

Views

Author

Vladeta Jovovic, Jun 12 2000

Keywords

Comments

Number of 7 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

Crossrefs

Programs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2022
Terms a(17) and beyond from Andrew Howroyd, Feb 28 2023

A005784 Number of 4-covers of an unlabeled n-set.

Original entry on oeis.org

1, 4, 17, 65, 230, 736, 2197, 6093, 15864, 38960, 90837, 202005, 430577, 883057, 1748909, 3355213, 6252575, 11345602, 20089514, 34778306, 58964020, 98053576, 160151566, 257229974, 406739271, 633795181, 974126408, 1477999320, 2215409037, 3282874359, 4812278064
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A055080.
First differences of A006148.

Programs

Formula

G.f.: (x^20 - x^19 + 4*x^18 + 9*x^17 + 23*x^16 + 39*x^15 + 90*x^14 + 131*x^13 + 204*x^12 + 238*x^11 + 252*x^10 + 238*x^9 + 204*x^8 + 131*x^7 + 90*x^6 + 39*x^5 + 23*x^4 + 9*x^3 + 4*x^2 - x + 1)/((1 - x^4)^3*(1 - x^3)^4*(1 - x^2)^3*(1 - x)^5).
a(n) ~ n^14/2092278988800. - Stefano Spezia, Aug 08 2022
a(n) = n^14/2092278988800 + n^13/19926466560 + n^12/418037760 + n^11/14598144 + 689*n^10/522547200 + 253*n^9/13934592 + 2184839*n^8/11705057280 + 10313*n^7/6967296 + 2319707*n^6/250822656 + 1817221*n^5/39813120 + 2405336243*n^4/13795246080 + 151784975*n^3/306561024 + 93746545019*n^2/95103590400 + 924100468541*n/717352796160 + 1 + (n^2/486 + 5*n/162 + 233/2187)*floor(n/3) + (n^2/256 + 15*n/256 + 101/512)*floor(n/4) - (n^3/1458 + 7*n^2/486 + 22*n/243 + 356/2187)*floor((n+1)/3) + (n^5/122880 + 5*n^4/16384 + 125*n^3/24576 + 359*n^2/8192 + 10967*n/61440 + 8461/32768)*floor(n/2) + (n/256 + 15/512)*floor((n+1)/4). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A005785 Number of 5-covers of an unlabeled n-set.

Original entry on oeis.org

1, 5, 28, 156, 863, 4571, 22952, 108182, 477136, 1969270, 7625579, 27804973, 95858868, 313747418, 978734539, 2920530663, 8363945469, 23057872913, 61357278239, 157985305473, 394486861086, 957156158394, 2260761331227
Offset: 0

Views

Author

Keywords

Comments

Number of 5 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A055080.
First differences of A052264.

Programs

Formula

G.f.: - (x^68 - 2*x^67 + 10*x^66 + 32*x^65 + 175*x^64 + 794*x^63 + 3441*x^62 + 13186*x^61 + 46027*x^60 + 146118*x^59 + 427347*x^58 + 1155432*x^57 + 2912873*x^56 + 6875608*x^55 + 15281029*x^54 + 32094658*x^53 + 63945531*x^52 + 121210914*x^51 + 219194198*x^50 + 378998758*x^49 + 627863648*x^48 + 998282344*x^47 + 1525746624*x^46 + 2244502676*x^45 + 3181886869*x^44 + 4351201210*x^43 + 5744918381*x^42 + 7328807372*x^41 + 9039504349*x^40 + 10785767638*x^39 + 12455264802*x^38 + 13925287384*x^37 + 15077477135*x^36 + 15812782150*x^35 + 16065602576*x^34 + 15812782150*x^33 + 15077477135*x^32 + 13925287384*x^31 + 12455264802*x^30 + 10785767638*x^29 + 9039504349*x^28 + 7328807372*x^27 + 5744918381*x^26 + 4351201210*x^25 + 3181886869*x^24 + 2244502676*x^23 + 1525746624*x^22 + 998282344*x^21 + 627863648*x^20 + 378998758*x^19 + 219194198*x^18 + 121210914*x^17 + 63945531*x^16 + 32094658*x^15 + 15281029*x^14 + 6875608*x^13 + 2912873*x^12 + 1155432*x^11 + 427347*x^10 + 146118*x^9 + 46027*x^8 + 13186*x^7 + 3441*x^6 + 794*x^5 + 175*x^4 + 32*x^3 + 10*x^2 - 2*x + 1)/((x^6 - 1)^2*(x^4 + x^3 + x^2 + x + 1)^6*(x^3 - x^2 + x - 1)^6*(x^2 + x + 1)^6*(x + 1)^10*(x - 1)^23).
a(n) = n^30/(30!*5!) + O(n^29). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0) = 1 prepended by Stefano Spezia, Aug 09 2022

A005786 Number of 6-covers of an unlabeled n-set.

Original entry on oeis.org

1, 6, 43, 336, 2864, 25326, 223034, 1890123, 15115098, 112980937, 787320629, 5121184083, 31188412225, 178517111561, 964196387369, 4933278065881, 23997707450765, 111358094980387, 494444748602595, 2106504840061571
Offset: 0

Views

Author

Keywords

Comments

Number of 6 X n binary matrices with at least one 1 in every column up to row and column permutations.

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Vladeta Jovovic, Jun 12 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A055484 Number of unlabeled 3-element intersecting families (with not necessarily distinct sets) of an n-element set.

Original entry on oeis.org

1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668, 24716, 35879, 51104, 71549, 98625, 134025, 179782, 238292, 312386, 405368, 521083, 663968, 839140, 1052439, 1310534, 1620985, 1992343, 2434229, 2957458, 3574108
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 03 2000

Keywords

Crossrefs

Cf. A053155 (labeled case), A005783, A002727, A051180.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,14,39,96,213,437,837,1520,2632,4380,7040,10979,16668},40] (* Harvey P. Dale, Jun 10 2024 *)
  • PARI
    x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017

Formula

G.f.: -x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from James Sellers, Jul 04 2000

A055485 Number of unlabeled 3-element intersecting families (with distinct sets) of an n-element set.

Original entry on oeis.org

4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295, 132485, 178011, 236268, 310086, 402768, 518158, 660692, 835486, 1048379, 1306039, 1616025, 1986887, 2428245, 2950913, 3566968, 4289896
Offset: 3

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 03 2000

Keywords

Crossrefs

Cf. A051180 (labeled case), A005783.

Programs

  • Mathematica
    Rest[Rest[Rest[CoefficientList[Series[-x^3*(x^8 + x^7 - 3*x^6 - x^5 + x^4 + 3*x^3 - x^2 - 3*x - 4)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x,0,50}], x]]]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{3, 1, -9, 0, 12, 7, -15, -16, 16, 15, -7, -12, 0, 9, -1, -3, 1}, {4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); Vec(-x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017

Formula

G.f.: -x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from James Sellers, Jul 04 2000

A055195 Number of 3-covers of an unlabeled n-set.

Original entry on oeis.org

1, 9, 29, 72, 154, 294, 522, 877, 1406, 2172, 3255, 4746, 6763, 9445, 12953, 17480, 23254, 30528, 39604, 50823, 64568, 81276, 101443, 125610, 154395, 188479, 228611, 275622, 330432, 394032, 467524, 552103, 649064, 759818, 885901
Offset: 2

Views

Author

Vladeta Jovovic, Jun 30 2000

Keywords

Comments

Covers are defined in proper sense, i.e. without empty sets or multiple sets.

Crossrefs

Column 3 of A055130.
Cf. A005783.

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^2(x^11-x^10-3x^9+4x^7+6x^6-3x^5-5x^4-3x^3+ 3x^2+6x+1)/ ((1-x^3)^2(1-x^2)^2(1-x)^3),{x,0,40}],x],2] (* or *) LinearRecurrence[ {3,-1,-3,-1,3,6,-6,-3,1,3,1,-3,1},{1,9,29,72,154,294,522,877,1406,2172,3255,4746,6763},40] (* Harvey P. Dale, Jul 18 2021 *)

Formula

G.f.: x^2*(x^11-x^10-3*x^9+4*x^7+6*x^6-3*x^5-5*x^4-3*x^3+3*x^2+6*x+1)/((1-x^3)^2*(1-x^2)^2*(1-x)^3).

Extensions

More terms from James Sellers, Jul 04 2000
Showing 1-10 of 11 results. Next