A055080
Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 9, 4, 1;
1, 9, 23, 17, 5, 1;
1, 12, 51, 65, 28, 6, 1;
1, 16, 103, 230, 156, 43, 7, 1;
1, 20, 196, 736, 863, 336, 62, 8, 1;
...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- Vladeta Jovovic, Binary matrices up to row and column permutations
- G. F. Royle, Counting Set Covers and Split Graphs, J. Integer Seqs., 3 (2000), #00.2.6.
- Eric Weisstein's World of Mathematics, Minimal covers
-
\\ Needs A(n,m) from A028657.
T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023
A003468
Number of minimal 3-covers of a labeled n-set.
Original entry on oeis.org
1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Minimal cover.
- Index entries for linear recurrences with constant coefficients, signature (22, -179, 638, -840).
-
[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
-
A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)
A057669
Triangle T(n,k) of number of minimal 3-covers of an unlabeled n+3-set that cover k points of that set uniquely (k=3,..,n+3).
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 7, 7, 6, 3, 11, 13, 14, 9, 4, 16, 22, 26, 21, 13, 5, 23, 34, 44, 40, 31, 17, 7, 31, 50, 68, 68, 59, 41, 23, 8, 41, 70, 100, 106, 101, 79, 55, 28, 10, 53, 95, 140, 157, 158, 136, 106, 68, 35, 12, 67, 125, 190, 221, 234, 214, 182, 132, 85, 42, 14, 83, 161
Offset: 0
[1], [2, 1], [4, 3, 2], [7, 7, 6, 3], ...
There are 7 minimal 3-covers of an unlabeled 6-set that cover 3 points of that set uniquely: {{1}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
A055066
Number of 7-covers of an unlabeled n-set.
Original entry on oeis.org
1, 7, 62, 664, 8609, 127415, 2004975, 31500927, 474504448, 6708348262, 88249739792, 1078567590128, 12269901302433, 130370516668917, 1298891291366245, 12182760243381355, 107979270564656625, 907568508195185203, 7256984238345563764, 55365443728411530716, 404091280028746802188
Offset: 0
A005784
Number of 4-covers of an unlabeled n-set.
Original entry on oeis.org
1, 4, 17, 65, 230, 736, 2197, 6093, 15864, 38960, 90837, 202005, 430577, 883057, 1748909, 3355213, 6252575, 11345602, 20089514, 34778306, 58964020, 98053576, 160151566, 257229974, 406739271, 633795181, 974126408, 1477999320, 2215409037, 3282874359, 4812278064
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- Vladeta Jovovic, Binary matrices up to row and column permutations
- Index entries for linear recurrences with constant coefficients, signature (5, -7, -1, 5, -1, 21, -33, 0, -4, 8, 68, -57, -3, -57, 13, 100, -32, 32, -100, -13, 57, 3, 57, -68, -8, 4, 0, 33, -21, 1, -5, 1, 7, -5, 1).
A005785
Number of 5-covers of an unlabeled n-set.
Original entry on oeis.org
1, 5, 28, 156, 863, 4571, 22952, 108182, 477136, 1969270, 7625579, 27804973, 95858868, 313747418, 978734539, 2920530663, 8363945469, 23057872913, 61357278239, 157985305473, 394486861086, 957156158394, 2260761331227
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- Vladeta Jovovic, Binary matrices up to row and column permutations
- Index entries for linear recurrences with constant coefficients, signature (7, -17, 13, 7, -11, 16, -44, 43, -65, 82, 46, -36, -28, -175, 85, -168, 504, 91, 77, -394, -664, -52, -382, 1642, 600, 813, -1209, -1632, -1650, -1050, 2982, 2124, 3592, -1360, -2074, -5329, -3607, 1970, 3608, 7640, 1778, 426, -8168, -6638, -3524, 2095, 8401, 6077, 5907, -5907, -6077, -8401, -2095, 3524, 6638, 8168, -426, -1778, -7640, -3608, -1970, 3607, 5329, 2074, 1360, -3592, -2124, -2982, 1050, 1650, 1632, 1209, -813, -600, -1642, 382, 52, 664, 394, -77, -91, -504, 168, -85, 175, 28, 36, -46, -82, 65, -43, 44, -16, 11, -7, -13, 17, -7, 1).
A005786
Number of 6-covers of an unlabeled n-set.
Original entry on oeis.org
1, 6, 43, 336, 2864, 25326, 223034, 1890123, 15115098, 112980937, 787320629, 5121184083, 31188412225, 178517111561, 964196387369, 4933278065881, 23997707450765, 111358094980387, 494444748602595, 2106504840061571
Offset: 0
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A055484
Number of unlabeled 3-element intersecting families (with not necessarily distinct sets) of an n-element set.
Original entry on oeis.org
1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668, 24716, 35879, 51104, 71549, 98625, 134025, 179782, 238292, 312386, 405368, 521083, 663968, 839140, 1052439, 1310534, 1620985, 1992343, 2434229, 2957458, 3574108
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1).
-
Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,14,39,96,213,437,837,1520,2632,4380,7040,10979,16668},40] (* Harvey P. Dale, Jun 10 2024 *)
-
x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017
A055485
Number of unlabeled 3-element intersecting families (with distinct sets) of an n-element set.
Original entry on oeis.org
4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295, 132485, 178011, 236268, 310086, 402768, 518158, 660692, 835486, 1048379, 1306039, 1616025, 1986887, 2428245, 2950913, 3566968, 4289896
Offset: 3
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (3,1,-9,0,12,7,-15,-16,16,15,-7,-12,0,9,-1,-3,1).
-
Rest[Rest[Rest[CoefficientList[Series[-x^3*(x^8 + x^7 - 3*x^6 - x^5 + x^4 + 3*x^3 - x^2 - 3*x - 4)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x,0,50}], x]]]] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{3, 1, -9, 0, 12, 7, -15, -16, 16, 15, -7, -12, 0, 9, -1, -3, 1}, {4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
-
x='x+O('x^50); Vec(-x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017
A055195
Number of 3-covers of an unlabeled n-set.
Original entry on oeis.org
1, 9, 29, 72, 154, 294, 522, 877, 1406, 2172, 3255, 4746, 6763, 9445, 12953, 17480, 23254, 30528, 39604, 50823, 64568, 81276, 101443, 125610, 154395, 188479, 228611, 275622, 330432, 394032, 467524, 552103, 649064, 759818, 885901
Offset: 2
- Andrew Howroyd, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Covers
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,-1,3,6,-6,-3,1,3,1,-3,1).
-
Drop[CoefficientList[Series[x^2(x^11-x^10-3x^9+4x^7+6x^6-3x^5-5x^4-3x^3+ 3x^2+6x+1)/ ((1-x^3)^2(1-x^2)^2(1-x)^3),{x,0,40}],x],2] (* or *) LinearRecurrence[ {3,-1,-3,-1,3,6,-6,-3,1,3,1,-3,1},{1,9,29,72,154,294,522,877,1406,2172,3255,4746,6763},40] (* Harvey P. Dale, Jul 18 2021 *)
Showing 1-10 of 11 results.
Comments