cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A005783 Number of 3-covers of an unlabeled n-set.

Original entry on oeis.org

1, 3, 9, 23, 51, 103, 196, 348, 590, 960, 1506, 2290, 3393, 4905, 6945, 9651, 13185, 17739, 23542, 30846, 39954, 51206, 64986, 81730, 101935, 126141, 154967, 189093, 229269, 276325, 331182, 394830, 468372, 553002, 650016, 760824, 886963
Offset: 0

Views

Author

Keywords

Comments

Equals first differences of A002727. - Vladeta Jovovic, May 24 2000
Number of 3 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x^3)^2(1-x^2)^2 (1-x)^3),{x,0,50}],x] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    Vec(G(3, x)*(1 - x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((1-x^3)^2*(1-x^2)^2*(1-x)^3).
a(n) ~ n^6/4320. - Stefano Spezia, Aug 08 2022
a(n) = n^6/4320 + 7*n^5/1440 + 79*n^4/1728 + 35*n^3/144 + 2939*n^2/4320 + 8863*n/8640 + 1 + (n/16 + 7/32)*floor(n/2) + (n/9 + 11/27)*floor(n/3) + floor((n+1)/3)/27. - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, May 24 2000
a(0) = 1 prepended by Stefano Spezia, Aug 09 2022

A057968 Triangle T(n,k) of numbers of minimal 5-covers of an unlabeled n+5-set that cover k points of that set uniquely (k=5,..,n+5).

Original entry on oeis.org

1, 4, 1, 19, 7, 2, 91, 46, 16, 3, 436, 279, 115, 28, 5, 1991, 1563, 740, 221, 49, 7, 8651, 7978, 4309, 1524, 405, 75, 10, 35354, 37290, 22604, 9272, 2875, 659, 115, 13, 135617, 159948, 107584, 50058, 17840, 4866, 1042, 163, 18, 488312, 633211
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005785.

Examples

			[1], [4, 1], [19, 7, 2], [91, 46, 16, 3], [436, 279, 115, 28, 5], ...; there are 46 minimal 5-covers of an unlabeled 8-set that cover 6 points of that set uniquely.
		

Crossrefs

Formula

T(n, k)=b(n, k)-b(n-1, k); b(n, k)=coefficient of x^k in (x^5/5!)*(Z(S_n; 27+5*x, 27+5*x^2, ...)+10*Z(S_n; 13+3*x, 27+5*x^2, 13+3*x^3, 27+5*x^4, ...)+15*Z(S_n; 7+x, 27+5*x^2, 7+x^3, 27+5*x^4, ...)+20*Z(S_n; 6+2*x, 6+2*x^2, 27+5*x^3, 6+2*x^4, 6+2*x^5, 27+5*x^6, ...)+20*Z(S_n; 4, 6+2*x^2, 13+3*x^3, 6+2*x^4, 4, 27+5*x^6, 4, 6+2*x^8, 13+3*x^9, 6+2*x^10, 4, 27+5*x^12, ...)+30*Z(S_n; 3+x, 7+x^2, 3+x^3, 27+5*x^4, 3+x^5, 7+x^6, 3+x^7, 27+5*x^8, ...)+24*Z(S_n; 2, 2, 2, 2, 27+5*x^5, 2, 2, 2, 2, 27+5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A055066 Number of 7-covers of an unlabeled n-set.

Original entry on oeis.org

1, 7, 62, 664, 8609, 127415, 2004975, 31500927, 474504448, 6708348262, 88249739792, 1078567590128, 12269901302433, 130370516668917, 1298891291366245, 12182760243381355, 107979270564656625, 907568508195185203, 7256984238345563764, 55365443728411530716, 404091280028746802188
Offset: 0

Views

Author

Vladeta Jovovic, Jun 12 2000

Keywords

Comments

Number of 7 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

Crossrefs

Programs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2022
Terms a(17) and beyond from Andrew Howroyd, Feb 28 2023

A005784 Number of 4-covers of an unlabeled n-set.

Original entry on oeis.org

1, 4, 17, 65, 230, 736, 2197, 6093, 15864, 38960, 90837, 202005, 430577, 883057, 1748909, 3355213, 6252575, 11345602, 20089514, 34778306, 58964020, 98053576, 160151566, 257229974, 406739271, 633795181, 974126408, 1477999320, 2215409037, 3282874359, 4812278064
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A055080.
First differences of A006148.

Programs

Formula

G.f.: (x^20 - x^19 + 4*x^18 + 9*x^17 + 23*x^16 + 39*x^15 + 90*x^14 + 131*x^13 + 204*x^12 + 238*x^11 + 252*x^10 + 238*x^9 + 204*x^8 + 131*x^7 + 90*x^6 + 39*x^5 + 23*x^4 + 9*x^3 + 4*x^2 - x + 1)/((1 - x^4)^3*(1 - x^3)^4*(1 - x^2)^3*(1 - x)^5).
a(n) ~ n^14/2092278988800. - Stefano Spezia, Aug 08 2022
a(n) = n^14/2092278988800 + n^13/19926466560 + n^12/418037760 + n^11/14598144 + 689*n^10/522547200 + 253*n^9/13934592 + 2184839*n^8/11705057280 + 10313*n^7/6967296 + 2319707*n^6/250822656 + 1817221*n^5/39813120 + 2405336243*n^4/13795246080 + 151784975*n^3/306561024 + 93746545019*n^2/95103590400 + 924100468541*n/717352796160 + 1 + (n^2/486 + 5*n/162 + 233/2187)*floor(n/3) + (n^2/256 + 15*n/256 + 101/512)*floor(n/4) - (n^3/1458 + 7*n^2/486 + 22*n/243 + 356/2187)*floor((n+1)/3) + (n^5/122880 + 5*n^4/16384 + 125*n^3/24576 + 359*n^2/8192 + 10967*n/61440 + 8461/32768)*floor(n/2) + (n/256 + 15/512)*floor((n+1)/4). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A005786 Number of 6-covers of an unlabeled n-set.

Original entry on oeis.org

1, 6, 43, 336, 2864, 25326, 223034, 1890123, 15115098, 112980937, 787320629, 5121184083, 31188412225, 178517111561, 964196387369, 4933278065881, 23997707450765, 111358094980387, 494444748602595, 2106504840061571
Offset: 0

Views

Author

Keywords

Comments

Number of 6 X n binary matrices with at least one 1 in every column up to row and column permutations.

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Vladeta Jovovic, Jun 12 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022
Showing 1-6 of 6 results.