cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A003468 Number of minimal 3-covers of a labeled n-set.

Original entry on oeis.org

1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3

Views

Author

Keywords

Comments

This is also the fourth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also the Sheffer comments in A193685. - Wolfdieter Lang, Oct 08 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
  • Maple
    A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)

Formula

G.f.: x^3/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)). - N. J. A. Sloane, May 12 1994, corrected by Vaclav Kotesovec, Nov 19 2012
E.g.f.: (exp(4*x)*(exp(x) - 1)^3)/6. More generally, e.g.f. for number of minimal m-covers of a labeled n-set is (exp((2^m - m - 1)*x)*(exp(x) - 1)^m)/m!. - Vladeta Jovovic, May 09 2004
If we define f(m, j, x) = sum(binomial(m, k)*stirling2(k, j)*x^(m - k),k = j .. m) then a(n) = f(n, 3, 4), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 7^n/6 - 6^n/2 + 5^n/2 - 4^n/6. - Vaclav Kotesovec, Nov 19 2012

A005783 Number of 3-covers of an unlabeled n-set.

Original entry on oeis.org

1, 3, 9, 23, 51, 103, 196, 348, 590, 960, 1506, 2290, 3393, 4905, 6945, 9651, 13185, 17739, 23542, 30846, 39954, 51206, 64986, 81730, 101935, 126141, 154967, 189093, 229269, 276325, 331182, 394830, 468372, 553002, 650016, 760824, 886963
Offset: 0

Views

Author

Keywords

Comments

Equals first differences of A002727. - Vladeta Jovovic, May 24 2000
Number of 3 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^6+x^4+2x^3+x^2+1)/((1-x^3)^2(1-x^2)^2 (1-x)^3),{x,0,50}],x] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    Vec(G(3, x)*(1 - x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((1-x^3)^2*(1-x^2)^2*(1-x)^3).
a(n) ~ n^6/4320. - Stefano Spezia, Aug 08 2022
a(n) = n^6/4320 + 7*n^5/1440 + 79*n^4/1728 + 35*n^3/144 + 2939*n^2/4320 + 8863*n/8640 + 1 + (n/16 + 7/32)*floor(n/2) + (n/9 + 11/27)*floor(n/3) + floor((n+1)/3)/27. - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, May 24 2000
a(0) = 1 prepended by Stefano Spezia, Aug 09 2022

A055066 Number of 7-covers of an unlabeled n-set.

Original entry on oeis.org

1, 7, 62, 664, 8609, 127415, 2004975, 31500927, 474504448, 6708348262, 88249739792, 1078567590128, 12269901302433, 130370516668917, 1298891291366245, 12182760243381355, 107979270564656625, 907568508195185203, 7256984238345563764, 55365443728411530716, 404091280028746802188
Offset: 0

Views

Author

Vladeta Jovovic, Jun 12 2000

Keywords

Comments

Number of 7 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

Crossrefs

Programs

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 08 2022
Terms a(17) and beyond from Andrew Howroyd, Feb 28 2023

A005784 Number of 4-covers of an unlabeled n-set.

Original entry on oeis.org

1, 4, 17, 65, 230, 736, 2197, 6093, 15864, 38960, 90837, 202005, 430577, 883057, 1748909, 3355213, 6252575, 11345602, 20089514, 34778306, 58964020, 98053576, 160151566, 257229974, 406739271, 633795181, 974126408, 1477999320, 2215409037, 3282874359, 4812278064
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X n binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A055080.
First differences of A006148.

Programs

Formula

G.f.: (x^20 - x^19 + 4*x^18 + 9*x^17 + 23*x^16 + 39*x^15 + 90*x^14 + 131*x^13 + 204*x^12 + 238*x^11 + 252*x^10 + 238*x^9 + 204*x^8 + 131*x^7 + 90*x^6 + 39*x^5 + 23*x^4 + 9*x^3 + 4*x^2 - x + 1)/((1 - x^4)^3*(1 - x^3)^4*(1 - x^2)^3*(1 - x)^5).
a(n) ~ n^14/2092278988800. - Stefano Spezia, Aug 08 2022
a(n) = n^14/2092278988800 + n^13/19926466560 + n^12/418037760 + n^11/14598144 + 689*n^10/522547200 + 253*n^9/13934592 + 2184839*n^8/11705057280 + 10313*n^7/6967296 + 2319707*n^6/250822656 + 1817221*n^5/39813120 + 2405336243*n^4/13795246080 + 151784975*n^3/306561024 + 93746545019*n^2/95103590400 + 924100468541*n/717352796160 + 1 + (n^2/486 + 5*n/162 + 233/2187)*floor(n/3) + (n^2/256 + 15*n/256 + 101/512)*floor(n/4) - (n^3/1458 + 7*n^2/486 + 22*n/243 + 356/2187)*floor((n+1)/3) + (n^5/122880 + 5*n^4/16384 + 125*n^3/24576 + 359*n^2/8192 + 10967*n/61440 + 8461/32768)*floor(n/2) + (n/256 + 15/512)*floor((n+1)/4). - Vaclav Kotesovec, Aug 09 2022

Extensions

More terms from Vladeta Jovovic, Jun 03 2000
a(0)=1 prepended by Alois P. Heinz, Aug 08 2022

A057668 Number of minimal 7-covers of a labeled n-set.

Original entry on oeis.org

1, 988, 549102, 226064280, 76785889587, 22762819040676, 6092115565691584, 1505097773271664000, 348617485585838373333, 76564317282173987801964, 16080209472530744351164146, 3250906483045575317042337960, 635954979082842132795003641239
Offset: 7

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Crossrefs

Formula

a(n) = (1/7!) * (127^n - 7 * 126^n + 21 * 125^n - 35 * 124^n + 35 * 123^n - 21 * 122^n + 7 * 121^n - 120^n).
G.f.: x^7 / ((120*x-1)*(121*x-1)*(122*x-1)*(123*x-1)*(124*x-1)*(125*x-1)*(126*x-1)*(127*x-1)). - Colin Barker, Jul 11 2013

Extensions

Additional term from Colin Barker, Jul 11 2013
Showing 1-6 of 6 results.