A028109 Duplicate of A003468.
1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins n\k|.....4.....5.....6.....7.....8.....9 ======================================== 4..|.....1 5..|.....4.....1 6..|....16.....9.....1 7..|....64....61....15.....1 8..|...256...369...151....22.....1 9..|..1024..2101..1275...305....30.....1 ... T(6,5) = 9. The set {1,2,3,4,5,6} can be partitioned into five subsets such that 1, 2, 3 and 4 belong to different subsets in 9 ways: {{1,5}{2}{3}{4}{6}}, {{1,6}{2}{3}{4}{5}}, {{2,5}{1}{3}{4}{6}}, {{2,6}{1}{3}{4}{5}}, {{3,5}{1}{2}{4}{6}}, {{3,6}{1}{2}{4}{5}}, {{4,5}{1}{2}{3}{6}}, {{4,6}{1}{2}{3}{5}} and {{5,6}{1}{2}{3}{4}}.
with combinat: T := (n, k) -> 1/(k-4)!*add ((-1)^(k-i)*binomial(k-4,i)*(i+4)^(n-4),i = 0..k-4): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
t[n_, k_] := StirlingS2[n, k] - 6*StirlingS2[n-1, k] + 11*StirlingS2[n-2, k] - 6*StirlingS2[n-3, k]; Flatten[ Table[ t[n, k], {n, 4, 13}, {k, 4, n}]] (* Jean-François Alcover, Dec 02 2011 *)
CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-119,342,-360},{1,18,205,1890},30] (* Harvey P. Dale, Jan 29 2024 *)
Vec(1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)))); // Vincenzo Librandi, Jun 24 2013
I:=[1, 38, 905, 17290]; [n le 4 select I[n] else 38*Self(n-1)-539*Self(n-2)+3382*Self(n-3)-7920*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
CoefficientList[Series[1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)), {x,0,20}], x] (* Vincenzo Librandi, Jun 23 2013 *)
x='x+O('x^30); Vec(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x))) \\ G. C. Greubel, Feb 07 2018
Vec(1/((1-5*x)*(1-6*x)*(1-7*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CoefficientList[Series[ 1/((1-6x)(1-7x)(1-8x)(1-9x)), {x, 0, 20} ], x] LinearRecurrence[{30,-335,1650,-3024},{1,30,565,8550},20] (* Harvey P. Dale, Mar 27 2023 *)
Vec(1/((1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2017
CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) ,{x,0,20}],x] (* or *) LinearRecurrence[{42,-659,4578,-11880},{1,42,1105,23310},20] (* Harvey P. Dale, Dec 14 2021 *)
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-5*x)*(1-6*x)))); // Vincenzo Librandi, Jun 24 2013
I:=[1, 15, 151]; [n le 3 select I[n] else 15*Self(n-1)-74*Self(n-2)+120*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
CoefficientList[Series[1 / ((1 - 4 x) (1 - 5 x) (1 - 6 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)
Vec(1/((1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CoefficientList[Series[1/((1-7x)(1-8x)(1-9x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{34,-431,2414,-5040},{1,34,725,12410},21] (* Harvey P. Dale, Jan 26 2012 *)
[1], [16, 6], [160, 120, 25], [1280, 1440, 600, 90], ...; There are 305=160+120+25 minimal 3-covers of a labeled 5-set.
Comments