A143495
Triangle read by rows: 3-Stirling numbers of the second kind.
Original entry on oeis.org
1, 3, 1, 9, 7, 1, 27, 37, 12, 1, 81, 175, 97, 18, 1, 243, 781, 660, 205, 25, 1, 729, 3367, 4081, 1890, 380, 33, 1, 2187, 14197, 23772, 15421, 4550, 644, 42, 1, 6561, 58975, 133057, 116298, 47271, 9702, 1022, 52, 1, 19683, 242461, 724260, 830845, 447195
Offset: 3
Triangle begins
n\k|....3....4....5....6....7....8
==================================
3..|....1
4..|....3....1
5..|....9....7....1
6..|...27...37...12....1
7..|...81..175...97...18....1
8..|..243..781..660..205...25....1
...
T(5,4) = 7. The set {1,2,3,4,5} can be partitioned into four subsets such that 1, 2 and 3 belong to different subsets in 7 ways: {{1}{2}{3}{4,5}}, {{1}{2}{5}{3,4}}, {{1}{2}{4}{3,5}}, {{1}{3}{4}{2,5}}, {{1}{3}{5}{2,4}}, {{2}{3}{4}{1,5}} and {{2}{3}{5}{1,4}}.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 3 1 | | 3 1 ||0 1 ||0 1 |
| 9 7 1 | = | 9 4 1 ||0 3 1 ||0 0 1 | ...
|27 37 12 1 | |27 13 5 1 ||0 9 4 1 ||0 0 3 1 |
|81 175 97 18 1| |81 40 18 6 1||0 27 13 5 1 ||0 0 9 4 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 3*x), x/(1 - x)). See A106516. (End)
- Peter Bala, Factorising (r,b)-Stirling arrays
- Andrei Z. Broder, The r-Stirling numbers, Report Number: CS-TR-82-949, Stanford University, Department of Computer Science; see also, Discrete Math. 49, 241-259 (1984).
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
- V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
Cf.
A005061 (column 4),
A005494 (row sums),
A008277,
A016753 (column 5),
A028025 (column 6),
A049458 (matrix inverse),
A106516,
A143492,
A143494,
A143496,
A143498.
-
A143495 := (n, k) -> (1/(k-3)!)*add((-1)^(k-i-1)*binomial(k-3,i)*(i+3)^(n-3), i = 0..k-3): for n from 3 to 12 do seq(A143495(n, k), k = 3..n) end do;
-
nmax = 12; t[n_, k_] := 1/(k-3)!* Sum[ (-1)^(k-j-1)*Binomial[k-3, j]*(j+3)^(n-3), {j, 0, k-3}]; Flatten[ Table[ t[n, k], {n, 3, nmax}, {k, 3, n}]] (* Jean-François Alcover, Dec 07 2011, after Maple *)
-
@CachedFunction
def stirling2r(n, k, r) :
if n < r: return 0
if n == r: return 1 if k == r else 0
return stirling2r(n-1, k-1, r) + k*stirling2r(n-1, k, r)
A143495 = lambda n, k: stirling2r(n, k, 3)
for n in (3..8): [A143495(n, k) for k in (3..n)] # Peter Luschny, Nov 19 2012
A143395
Triangle read by rows: T(n,k) = number of forests of k labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 9, 1, 0, 15, 55, 18, 1, 0, 31, 285, 205, 30, 1, 0, 63, 1351, 1890, 545, 45, 1, 0, 127, 6069, 15421, 7770, 1190, 63, 1, 0, 255, 26335, 116298, 95781, 24150, 2282, 84, 1, 0, 511, 111645, 830845, 1071630, 416451, 62370, 3990, 108, 1
Offset: 0
T(3,2) = 9: {1}{2}<-3, {1}{3}<-2, {1}{2,3}, {2}{1}<-3, {2}{3}<-1, {2}{1,3}, {3}{1}<-2, {3}{2}<-1, {3}{1,2}.
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 9, 1;
0, 15, 55, 18, 1;
0, 31, 285, 205, 30, 1;
0, 63, 1351, 1890, 545, 45, 1;
0, 127, 6069, 15421, 7770, 1190, 63, 1;
...
From _Peter Bala_, Jan 07 2015: (Start)
T(4,2) = 55: There are 7 partitions of the set {1,2,3,4} into 2 blocks. For the 3 set partitions of the type {a,b}{c,d} we can choose a nonempty subset from each block in one of 3*3 ways giving 3*3*3 = 27 possibilities in all. The remaining 4 set partitions of {1,2,3,4} into 2 blocks are of the form {a,b,c}{d} and we can choose a nonempty subset from each block in 7*1 ways giving 4*7*1 = 28 possible choices. Thus in total T(4,2) = 27 + 28 = 55.
Recurrence equation example:
T(4,2) = sum {j = 1..3} (2^(4-j) - 1)*binomial(3,j)*T(j,1) = 7*3*1 + 3*3*3 + 1*1*7 = 55.
Connection constants:
Row 3 = [0, 7, 9, 1]. Hence x^3 = 7*x + 9*x*(x - 3) + x*(x - 4)*(x - 5); Row 4 = [0, 15, 55, 18, 1]. Hence x^4 = 15*x + 55*x*(x - 3) + 18*x*(x - 4)*(x - 5) + x*(x - 5)*(x - 6)*(x - 7).
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 6 1 ||0 3 1 ||0 0 1 |... = | 7 9 1 |
|15 21 9 1 ||0 7 6 1 ||0 0 3 1 | |15 55 18 1 |
|... ||0 15 21 9 1||0 0 7 6 1| |... |
|... ||... ||... | | |
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Takao Komatsu, Eli Bagno, and David Garber, A q,r-analogue of poly-Stirling numbers of second kind with combinatorial applications, arXiv:2209.06674 [math.CO], 2022.
- Index entries for sequences related to rooted trees
-
[[(&+[Binomial(n,j)*StirlingSecond(j,k)*k^(n-j): j in [k..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
-
T:= (n, k)-> add(binomial(n,t)*Stirling2(t,k)*k^(n-t), t=k..n):
seq(seq(T(n, k), k=0..n), n=0..11);
-
t[0, 0]=1; t[n_, k_]:= SeriesCoefficient[Exp[y*Exp[x]*(Exp[x]-1)], {x, 0, n}, {y, 0, k}]*n!; Table[t[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 05 2013, after Vladeta Jovovic *)
Table[If[n==k==0, 1, If[k==0, 0, Sum[Binomial[n, j]*StirlingS2[j, k]* k^(n-j), {j,k,n}]]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2019 *)
-
{T(n,k) = sum(j=k, n, binomial(n,j)*stirling(j,k,2)*k^(n-j))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 07 2019
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 2^(n+1)-1, 10) # Peter Luschny, Jan 18 2016
A016075
Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)).
Original entry on oeis.org
1, 38, 905, 17290, 289821, 4453638, 64331905, 887339330, 11810819141, 152832918238, 1933092302505, 23997027406170, 293289532268461, 3537885908902838, 42204462297434705, 498697803478957810, 5844588402226277781, 68011678300853991438, 786547256602640400505
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)))); // Vincenzo Librandi, Jun 24 2013
-
I:=[1, 38, 905, 17290]; [n le 4 select I[n] else 38*Self(n-1)-539*Self(n-2)+3382*Self(n-3)-7920*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
-
CoefficientList[Series[1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)), {x,0,20}], x] (* Vincenzo Librandi, Jun 23 2013 *)
-
x='x+O('x^30); Vec(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x))) \\ G. C. Greubel, Feb 07 2018
A028165
Expansion of 1/((1-5x)*(1-6x)*(1-7x)*(1-8x)).
Original entry on oeis.org
1, 26, 425, 5590, 64701, 688506, 6906145, 66324830, 616252901, 5580303586, 49508360265, 432061044870, 3720287489101, 31681154472266, 267320885100785, 2238337148081710, 18621251375573301, 154069635600426546
Offset: 0
A028200
Expansion of 1/((1-6x)*(1-7x)*(1-8x)*(1-9x)).
Original entry on oeis.org
1, 30, 565, 8550, 113701, 1388310, 15958405, 175419750, 1863406501, 19269697590, 195034120645, 1939826329350, 19018419228901, 184245490086870, 1767124523521285, 16805853434269350, 158682246543588901, 1489103597614860150, 13900428943759584325
Offset: 0
-
CoefficientList[Series[ 1/((1-6x)(1-7x)(1-8x)(1-9x)), {x, 0, 20} ], x]
LinearRecurrence[{30,-335,1650,-3024},{1,30,565,8550},20] (* Harvey P. Dale, Mar 27 2023 *)
-
Vec(1/((1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2017
A016094
Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)*(1-12*x)).
Original entry on oeis.org
1, 42, 1105, 23310, 431221, 7309722, 116419465, 1769717670, 25948716541, 369730963602, 5147200519825, 70298695224030, 944897655707461, 12530341519244682, 164265473257148185, 2132247784185258390
Offset: 0
-
CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) ,{x,0,20}],x] (* or *) LinearRecurrence[{42,-659,4578,-11880},{1,42,1105,23310},20] (* Harvey P. Dale, Dec 14 2021 *)
A016109
Expansion of 1/((1-7*x)*(1-8*x)*(1-9*x)*(1-10*x)).
Original entry on oeis.org
1, 34, 725, 12410, 186501, 2571114, 33339685, 413066170, 4941549701, 57504755594, 654463491045, 7314256515930, 80522026412101, 875355238834474, 9415203971344805, 100355146006589690
Offset: 0
-
CoefficientList[Series[1/((1-7x)(1-8x)(1-9x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{34,-431,2414,-5040},{1,34,725,12410},21] (* Harvey P. Dale, Jan 26 2012 *)
Showing 1-7 of 7 results.
Comments