cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A028025 Expansion of 1/((1-3x)*(1-4x)*(1-5x)*(1-6x)).

Original entry on oeis.org

1, 18, 205, 1890, 15421, 116298, 830845, 5709330, 38119741, 249026778, 1599719485, 10142356770, 63639854461, 396031348458, 2448208592125, 15053605980210, 92160458747581, 562225198873338, 3419937140824765
Offset: 0

Views

Author

Keywords

Comments

This gives the fourth column of the Sheffer triangle A143495 (3-restricted Stirling2 numbers). See the e.g.f. given below, and comments on the general case under A193685. - Wolfdieter Lang, Oct 08 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-119,342,-360},{1,18,205,1890},30] (* Harvey P. Dale, Jan 29 2024 *)
  • PARI
    Vec(1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,3), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = -5^(n+3)/2 + 2*4^(n+2)+ 6^(n+2) - 3^(n+2)/2. - R. J. Mathar, Mar 22 2011
O.g.f.: 1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)).
E.g.f.: (d^3/dx^3)(exp(3*x)*((exp(x)-1)^3)/3!). - Wolfdieter Lang, Oct 08 2011

A028165 Expansion of 1/((1-5x)*(1-6x)*(1-7x)*(1-8x)).

Original entry on oeis.org

1, 26, 425, 5590, 64701, 688506, 6906145, 66324830, 616252901, 5580303586, 49508360265, 432061044870, 3720287489101, 31681154472266, 267320885100785, 2238337148081710, 18621251375573301, 154069635600426546
Offset: 0

Views

Author

Keywords

Comments

This is the column m=2 sequence (without leading zeros) of the Sheffer triangle (exp(5*x), exp(x)-1) of the 5-restricted Stirling2 numbers A193685. For a proof see the column o.g.f. formula there. - Wolfdieter Lang, Oct 07 2011

Crossrefs

Programs

Formula

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,5), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 26*a(n-1) - 251*a(n-2) + 1066*a(n-3) - 1680*a(n-4), n >= 4. - Vincenzo Librandi, Mar 19 2011
a(n) = 15*a(n-1) - 56*a(n-2) + 6^(n+1) - 5^(n+1), a(0)=1, a(1)=26. - Vincenzo Librandi, Mar 19 2011
E.g.f.: (d^3/dx^3)(exp(5*x)*((exp(x)-1)^3)/3!). See the Sheffer triangle comment above. - Wolfdieter Lang, Oct 07 2011
a(n) = -125*5^n/6 + 108*6^n - 343*7^n/2 + 256*8^n/3. - R. J. Mathar, Jun 23 2013

A028200 Expansion of 1/((1-6x)*(1-7x)*(1-8x)*(1-9x)).

Original entry on oeis.org

1, 30, 565, 8550, 113701, 1388310, 15958405, 175419750, 1863406501, 19269697590, 195034120645, 1939826329350, 19018419228901, 184245490086870, 1767124523521285, 16805853434269350, 158682246543588901, 1489103597614860150, 13900428943759584325
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[ 1/((1-6x)(1-7x)(1-8x)(1-9x)), {x, 0, 20} ], x]
    LinearRecurrence[{30,-335,1650,-3024},{1,30,565,8550},20] (* Harvey P. Dale, Mar 27 2023 *)
  • PARI
    Vec(1/((1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2017

Formula

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,6), (n >= 3). [Milan Janjic, Apr 26 2009]
a(n) = 17*a(n-1) - 72*a(n-2) + 7^(n+1) - 6^(n+1), a(0)=1, a(1)=30. - Vincenzo Librandi, Mar 11 2011
a(n) = (9^(n+3) - 3*8^(n+3) + 3*7^(n+3) - 6^(n+3))/6. [Yahia Kahloune, Jun 12 2013]
a(n) = 30*a(n-1) - 335*a(n-2) + 1650*a(n-3) - 3024*a(n-4). - Matthew House, Feb 11 2017

A016094 Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)*(1-12*x)).

Original entry on oeis.org

1, 42, 1105, 23310, 431221, 7309722, 116419465, 1769717670, 25948716541, 369730963602, 5147200519825, 70298695224030, 944897655707461, 12530341519244682, 164265473257148185, 2132247784185258390
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) ,{x,0,20}],x] (* or *) LinearRecurrence[{42,-659,4578,-11880},{1,42,1105,23310},20] (* Harvey P. Dale, Dec 14 2021 *)

Formula

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,9), n >= 3. - Milan Janjic, Apr 26 2009
a(n) = 42*a(n-1) - 659*a(n-2) + 4578*a(n-3) - 11880*a(n-4), n >= 4. - Vincenzo Librandi, Mar 18 2011
a(n) = 23*a(n-1) - 132*a(n-2) + 10^(n+1) - 9^(n+1), n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = 5*10^(n+2) + 2*12^(n+2) - 11^(n+3)/2 - 3*9^(n+2)/2. - R. J. Mathar, Mar 19 2011

A016109 Expansion of 1/((1-7*x)*(1-8*x)*(1-9*x)*(1-10*x)).

Original entry on oeis.org

1, 34, 725, 12410, 186501, 2571114, 33339685, 413066170, 4941549701, 57504755594, 654463491045, 7314256515930, 80522026412101, 875355238834474, 9415203971344805, 100355146006589690
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-7x)(1-8x)(1-9x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{34,-431,2414,-5040},{1,34,725,12410},21] (* Harvey P. Dale, Jan 26 2012 *)

Formula

If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,7), n >= 3. - Milan Janjic, Apr 26 2009; adapted by R. J. Mathar, Mar 15 2011
a(n) = 19*a(n-1) - 90*a(n-2) + 8^(n+1) - 7^(n+1), n >= 2. - Vincenzo Librandi, Mar 12 2011
a(n) = (10^(n+3) - 3*9^(n+3) + 3*8^(n+3) - 7^(n+3))/6. - Bruno Berselli, Mar 12 2011
a(n) = 34*a(n-1) - 431*a(n-2) + 2414*a(n-3) - 5040*a(n-4); a(0)=1, a(1)=34, a(2)=725, a(3)=12410. - Harvey P. Dale, Jan 26 2012

Extensions

Offset changed to 0 by Vincenzo Librandi, Mar 12 2011
Showing 1-5 of 5 results.