cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143496 4-Stirling numbers of the second kind.

Original entry on oeis.org

1, 4, 1, 16, 9, 1, 64, 61, 15, 1, 256, 369, 151, 22, 1, 1024, 2101, 1275, 305, 30, 1, 4096, 11529, 9751, 3410, 545, 39, 1, 16384, 61741, 70035, 33621, 7770, 896, 49, 1, 65536, 325089, 481951, 305382, 95781, 15834, 1386, 60, 1, 262144, 1690981, 3216795
Offset: 4

Views

Author

Peter Bala, Aug 20 2008

Keywords

Comments

This is the case r = 4 of the r-Stirling numbers of the second kind. The 4-Stirling numbers of the second kind count the ways of partitioning the set {1,2,...,n} into k nonempty disjoint subsets with the restriction that the elements 1, 2, 3 and 4 belong to distinct subsets. For remarks on the general case see A143494 (r = 2). The corresponding array of 4-Stirling numbers of the first kind is A143493. The theory of r-Stirling numbers of both kinds is developed in [Broder]. For 4-Lah numbers refer to A143499.
From Wolfdieter Lang, Sep 29 2011: (Start)
T(n,k) = S(n,k,4), n >= k >= 4, in Mikhailov's first paper, eq.(28) or (A3). E.g.f. column k from (A20) with k->4, r->k. Therefore, with offset [0,0], this triangle is the Sheffer triangle (exp(4*x),exp(x)-1) with e.g.f. of column no. m >= 0: exp(4*x)*((exp(x)-1)^m)/m!. See one of the formulas given below. For Sheffer matrices see the W. Lang link under A006232 with the S. Roman reference, also found in A132393.
(End)

Examples

			Triangle begins
n\k|.....4.....5.....6.....7.....8.....9
========================================
4..|.....1
5..|.....4.....1
6..|....16.....9.....1
7..|....64....61....15.....1
8..|...256...369...151....22.....1
9..|..1024..2101..1275...305....30.....1
...
T(6,5) = 9. The set {1,2,3,4,5,6} can be partitioned into five subsets such that 1, 2, 3 and 4 belong to different subsets in 9 ways: {{1,5}{2}{3}{4}{6}}, {{1,6}{2}{3}{4}{5}}, {{2,5}{1}{3}{4}{6}}, {{2,6}{1}{3}{4}{5}}, {{3,5}{1}{2}{4}{6}}, {{3,6}{1}{2}{4}{5}}, {{4,5}{1}{2}{3}{6}}, {{4,6}{1}{2}{3}{5}} and {{5,6}{1}{2}{3}{4}}.
		

Crossrefs

Cf. A003468 (column 7), A005060 (column 5), A008277, A016103 (column 6), A045379 (row sums), A049459 (matrix inverse), A143493, A143494, A143495, A143499.

Programs

  • Maple
    with combinat: T := (n, k) -> 1/(k-4)!*add ((-1)^(k-i)*binomial(k-4,i)*(i+4)^(n-4),i = 0..k-4): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
  • Mathematica
    t[n_, k_] := StirlingS2[n, k] - 6*StirlingS2[n-1, k] + 11*StirlingS2[n-2, k] - 6*StirlingS2[n-3, k]; Flatten[ Table[ t[n, k], {n, 4, 13}, {k, 4, n}]] (* Jean-François Alcover, Dec 02 2011 *)

Formula

T(n+4,k+4) = (1/k!)*Sum_{i = 0..k} (-1)^(k-i)*C(k,i)*(i+4)^n, n,k >= 0.
T(n,k) = Stirling2(n,k) - 6*Stirling2(n-1,k) + 11*Stirling2(n-2,k) - 6*Stirling2(n-3,k) for n,k >= 4.
Recurrence relation: T(n,k) = T(n-1,k-1) + k*T(n-1,k) for n > 4 with boundary conditions: T(n,3) = T(3,n) = 0 for all n; T(4,4) = 1; T(4,k) = 0 for k > 4. Special cases: T(n,4) = 4^(n-4); T(n,5) = 5^(n-4) - 4^(n-4).
E.g.f. (k+4)-th column (with offset 4): (1/k!)*exp(4*x)*(exp(x)-1)^k.
O.g.f. k-th column: Sum_{n>=k} T(n,k)*x^n = x^k/((1-4*x)*(1-5*x)*...*(1-k*x)).
E.g.f.: exp(4*t + x*(exp(t)-1)) = Sum_{n = 0..infinity} Sum_(k = 0..n) T(n+4,k+4)*x^k*t^n/n! = Sum_{n = 0..infinity} B_n(4;x)*t^n/n! = 1 + (4+x)*t/1! + (16+9*x+x^2)*t^2/2! + ..., where the row polynomials, B_n(4;x) := Sum_{k = 0..n} T(n+4,k+4)*x^k, may be called the 4-Bell polynomials.
Dobinski-type identities: Row polynomial B_n(4;x) = exp(-x)*Sum_{i = 0..infinity} (i+4)^n*x^i/i!; Sum_{k = 0..n} k!*T(n+4,k+4)*x^k = Sum_{i = 0..infinity} (i+4)^n*x^i/(1+x)^(i+1).
The T(n,k) are the connection coefficients between the falling factorials and the shifted monomials (x+4)^(n-4). For example, 16 + 9*x + x*(x-1) = (x+4)^2; 64 + 61*x + 15*x*(x-1) + x*(x-1)*(x-2) = (x+4)^3.
This array is the matrix product P^3 * S, where P denotes Pascal's triangle, A007318 and S denotes the lower triangular array of Stirling numbers of the second kind, A008277 (apply Theorem 10 of [Neuwirth]).
The inverse array is A049459, the signed 4-Stirling numbers of the first kind.
From Peter Bala, Sep 19 2008: (Start)
Let D be the derivative operator d/dx and E the Euler operator x*d/dx. Then x^(-4)*E^n*x^4 = Sum_{k = 0..n} T(n+4,k+4)*x^k*D^k.
The row generating polynomials R_n(x) := Sum_{k=4..n} T(n,k)*x^k satisfy the recurrence R_(n+1)(x) = x*R_n(x) + x*d/dx(R_n(x)) with R_4(x) = x^4. It follows that the polynomials R_n(x) have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
Relation with the 4-Eulerian numbers E_4(n,j) := A144698(n,j): T(n,k) = 4!/k!*Sum_{j = n-k..n-4} E_4(n,j)*binomial(j,n-k) for n >= k >= 4.
(End)

A003468 Number of minimal 3-covers of a labeled n-set.

Original entry on oeis.org

1, 22, 305, 3410, 33621, 305382, 2619625, 21554170, 171870941, 1337764142, 10216988145, 76862115330, 571247591461, 4203844925302, 30687029023865, 222518183370890, 1604626924403181, 11518132293452862
Offset: 3

Views

Author

Keywords

Comments

This is also the fourth column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See the e.g.f. given below. See also the Sheffer comments in A193685. - Wolfdieter Lang, Oct 08 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [7^n/6 - 6^n/2 + 5^n/2 - 4^n/6: n in [3..30]]; // Vincenzo Librandi, May 03 2013
  • Maple
    A003468:=1/(6*z-1)/(4*z-1)/(7*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[7^n/6 - 6^n/2 + 5^n/2 - 4^n/6, {n, 3, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    LinearRecurrence[{22,-179,638,-840},{1,22,305,3410},20] (* Harvey P. Dale, Jan 09 2024 *)

Formula

G.f.: x^3/((1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)). - N. J. A. Sloane, May 12 1994, corrected by Vaclav Kotesovec, Nov 19 2012
E.g.f.: (exp(4*x)*(exp(x) - 1)^3)/6. More generally, e.g.f. for number of minimal m-covers of a labeled n-set is (exp((2^m - m - 1)*x)*(exp(x) - 1)^m)/m!. - Vladeta Jovovic, May 09 2004
If we define f(m, j, x) = sum(binomial(m, k)*stirling2(k, j)*x^(m - k),k = j .. m) then a(n) = f(n, 3, 4), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 7^n/6 - 6^n/2 + 5^n/2 - 4^n/6. - Vaclav Kotesovec, Nov 19 2012

A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0

Views

Author

Werner Schulte, Apr 19 2024

Keywords

Comments

Depending on some fixed integer m >= 0 we define a family of square arrays A(m; n, k) = (Sum_{i=0..m} (-1)^i * binomial(m, i) * (k + m - i)^(n+m)) / m! for k, n >= 0. Special cases are: A004248 (m=0), A343237 (m=1) and this array (m=2). The A(m; n, k) satisfy: A(m; n, k) = (k+m) * A(m; n-1, k) + A(m-1; n, k) with initial values A(0; n, k) = k^n and A(m; 0, k) = 1.
Further properties are conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+m} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+m, m) * A048993(n+m, k+m) * x^k);
(3) The LU decompositions of these arrays are given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(m; n, k) = A048993(n+m, k+m) * (k+m)! / m!, i.e., A(m; n, k) = Sum_{i=0..k} L(m; n, i) * binomial(k, i).
The three conjectures are true, see links. - Sela Fried, Jul 07 2024

Examples

			Square array A(n, k) starts:
n\k :    0     1       2       3        4         5         6         7
=======================================================================
  0 :    1     1       1       1        1         1         1         1
  1 :    3     6       9      12       15        18        21        24
  2 :    7    25      55      97      151       217       295       385
  3 :   15    90     285     660     1275      2190      3465      5160
  4 :   31   301    1351    4081     9751     19981     36751     62401
  5 :   63   966    6069   23772    70035    170898    365001    706104
  6 :  127  3025   26335  133057   481951   1398097   3463615   7628545
  7 :  255  9330  111645  724260  3216795  11075670  31794105  79669320
  etc.
		

Crossrefs

Rows: A000012 (n=0), A008585 (n=1), A227776 (n=2).
Columns: A000225 (k=0), A000392 (k=1), A016269 (k=2), A016753 (k=3), A016103 (k=4), A019757 (k=5), A020570 (k=6), A020782 (k=7).
Main diagonal: A281596(n+2).

Programs

  • Mathematica
    A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
    Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2

Formula

A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0.
Conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k);
(3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i).
The three conjectures are true. See comments. - Sela Fried, Jul 09 2024

A245020 Number of ordered n-tuples of positive integers, whose minimum is 0 and maximum is 5.

Original entry on oeis.org

0, 2, 30, 302, 2550, 19502, 140070, 963902, 6433590, 41983502, 269335110, 1705278302, 10686396630, 66425568302, 410223570150, 2520229093502, 15417960407670, 93999281613902, 571487645261190, 3466523088409502, 20987674370482710, 126870924446280302
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 17 2014

Keywords

Comments

For given k and n positive integers, let T(k,n) represent the number of n-tuples of positive integers, whose minimum is zero and maximum is k. In this notation, the sequence corresponds to a(n) = T(5,n).

Examples

			For n=2 the a(2)=2 solutions are (0,5) and (5,0).
		

Crossrefs

T(1,n) gives A000918; T(2,n-1) gives A028243, T(n,3) gives A008588, T(n,4) gives A005914.
Cf. A016103.

Programs

  • Mathematica
    LinearRecurrence[{15,-74,120},{0,2,30},30] (* Harvey P. Dale, Nov 20 2020 *)
  • PARI
    concat(0, Vec(-2*x^2/((4*x-1)*(5*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Sep 18 2014

Formula

a(n) = 6^n-2*5^n+4^n.
a(n) = 15*a(n-1)-74*a(n-2)+120*a(n-3) for n>3. G.f.: -2*x^2 / ((4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Sep 18 2014
a(n) = 2*A016103(n). - Colin Barker, Sep 18 2014
Showing 1-4 of 4 results.