cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ovidiu Bagdasar

Ovidiu Bagdasar's wiki page.

Ovidiu Bagdasar has authored 97 sequences. Here are the ten most recent ones:

A345380 Number of Jacobsthal-Lucas numbers m <= n.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Examples

			a(0)=0 since the least term in A014551 is 1.
a(1)=1 since A014551(0) = 2 is followed in that sequence by 1.
a(k)=2 for 2 <= k <= 4 since the first terms of A014551 are {2, 1, 5}.
		

Crossrefs

Cf. A014551, A108852 (Fibonacci), A130245 (Lucas), A130253.

Programs

  • Mathematica
    Block[{a = 1, b = -2, nn = 105, u, v = {}}, u = {2, a}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v]  (* or *)
    {0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LinearRecurrence[{1, 2}, {2, 1}, 8] (* Michael De Vlieger, Jun 16 2021 *)

A345379 Number of terms m <= n, where m is a term in the bisection of Lucas numbers (A005248).

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Examples

			a(0)=a(1)=0, since the least term in A005248 is 2.
a(2)=1 since A005248(0) = 2 is followed in that sequence by 3.
a(k)=3 for 3 <= k <= 6 since the first terms of A005248 are {0, 2, 3, 7}.
		

Crossrefs

Cf. A005248, A108852 (Fibonacci), A130245 (Lucas), A130260.

Programs

  • Mathematica
    Block[{a = 3, b = 1, nn = 105, u, v = {}}, u = {2, a}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *)
    {0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LucasL@ Range[0, 10, 2] (* Michael De Vlieger, Jun 16 2021 *)

A345378 Number of terms m <= n, where m is a term in A006497.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Comments

Table 1 of Andrica 2021 paper (p. 24), refers to A006497 as "bronze Lucas" numbers.

Examples

			a(0)=a(1)=0, since the least term in A006497 is 2.
a(2)=1 since A006497(0) = 2 is followed in that sequence by 3.
a(k)=3 for 3 <= k <= 11 since the first terms of A006490 are {0, 2, 3, 11}.
		

Crossrefs

Cf. A006497, A108852 (Fibonacci), A130245 (Lucas), A345377.

Programs

  • Mathematica
    Block[{a = 3, b = -1, nn = 105, u, v = {}}, u = {0, 1}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *)
    {0}~Join~Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, #]] &@ LucasL[Range[0, 4], 3] (* Michael De Vlieger, Jun 16 2021 *)

A345377 Number of terms m <= n, where m is a term in A006190.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Comments

Table 1 of Andrica 2021 paper (p. 24) refers to A006190 as the "bronze Fibonacci" numbers.

Examples

			a(0)=1, since A006190(0) = 0 and A006190(1) = 1.
a(1)=a(2)=2 since 0 and 1 are the terms in A006190 that do not exceed 1 and 2, respectively.
a(k)=3 for 3 <= k <= 9 since the first terms of A006190 are {0, 1, 3, 10}.
		

Crossrefs

Cf. A006190, A108852 (Fibonacci), A130245 (Lucas), A345378.

Programs

  • Mathematica
    Block[{a = 3, b = -1, nn = 105, u, v = {}}, u = {0, 1}; Do[AppendTo[u, Total[{-b, a} u[[-2 ;; -1]]]]; AppendTo[v, Count[u, _?(# <= i &)]], {i, nn}]; {Boole[First[u] <= 0]}~Join~v] (* or *)
    Accumulate@ ReplacePart[ConstantArray[0, Last[#]], Map[# -> 1 &, # + 1]] &@ Fibonacci[Range[0, 5], 3] (* Michael De Vlieger, Jun 16 2021 *)

A345376 Number of Companion Pell numbers m <= n.

Original entry on oeis.org

0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Author

Ovidiu Bagdasar, Jun 16 2021

Keywords

Comments

Table 1 of Andrica 2021 paper (p. 24) refers to A002203 as "Pell-Lucas" numbers.

Examples

			The Pell-Lucas numbers A002203 are 2, 2, 6, 14, 34, 82, ...
a(0)=a(1)=0, since there are no Pell-Lucas numbers less than or equal to 0 and 1, respectively.
a(2)=a(3)=a(4)=a(5)=2, since the first 2 Pell-Lucas numbers, 2 and 2, are less than or equal to 2, 3, 4, and 5, respectively.
		

Crossrefs

Cf. A002203, A108852 (Fibonacci), A130245 (Lucas), A335741 (Pell).

Programs

A340236 Odd composite integers m such that A006190(3*m-J(m,13)) == 3 (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

9, 119, 121, 187, 327, 345, 649, 705, 1003, 1089, 1121, 1189, 1881, 2091, 2299, 3553, 4187, 5461, 5565, 5841, 6165, 6485, 7107, 7139, 7145, 7467, 7991, 8321, 8449, 11041, 12705, 12871, 13833, 14041, 16109, 16851
Offset: 1

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=3, D=13 and k=3, while U(m) is A006190(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006190, A071904, A327653 (a=3, b=-1, k=1), A340119 (a=3, b=-1, k=2).
Cf. A340235 (a=1, b=-1, k=3), A340237 (a=5, b=-1, k=3), A340238 (a=7, b=-1, k=3).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 13], 3] - 3, #] &]

A340237 Odd composite integers m such that A052918(3*m-J(m,29)) == 5 (mod m), where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 27, 33, 35, 65, 81, 99, 121, 221, 243, 297, 363, 513, 585, 627, 705, 729, 891, 1089, 1539, 1541, 1881, 2145, 2187, 2299, 2673, 3267, 3605, 4181, 4573, 4579, 5265, 5633, 6721, 6993, 7865, 8019, 8979, 9131, 9801, 10307, 10877, 10881, 13333, 13741, 14001, 14705, 14989
Offset: 1

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=5, D=29 and k=3, while U(m) is A052918(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A052918, A071904, A340095 (a=5, b=-1, k=1), A340120 (a=5, b=-1, k=2).
Cf. A340235 (a=1, b=-1, k=3), A340236 (a=3, b=-1, k=3), A340238 (a=7, b=-1, k=3).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 29] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 29], 5] - 5, #] &]

A340238 Odd composite integers m such that A054413(3*m-J(m,53)) == 7 (mod m), where J(m,53) is the Jacobi symbol.

Original entry on oeis.org

9, 25, 27, 51, 91, 105, 153, 185, 225, 289, 325, 425, 459, 481, 513, 747, 867, 897, 925, 945, 1001, 1189, 1299, 1469, 1633, 1785, 1921, 2241, 2245, 2599, 2601, 2651, 2769, 2907, 3051, 3277, 3825, 3897, 5681, 6225, 6507, 6777, 7225, 7361, 7803, 8023, 8227, 8701, 8721
Offset: 1

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=7, D=53 and k=3, while U(m) is A054413(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A054413, A071904, A340096 (a=7, b=-1, k=1), A340121 (a=7, b=-1, k=2).
Cf. A340235 (a=1, b=-1, k=3), A340236 (a=3, b=-1, k=3), A340237 (a=5, b=-1, k=3).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 53], 7] - 7, #] &]

A340239 Odd composite integers m such that A001906(3*m-J(m,5)) == 3*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

9, 49, 63, 141, 161, 207, 323, 341, 377, 441, 671, 901, 1007, 1127, 1281, 1449, 1853, 1891, 2071, 2303, 2407, 2501, 2743, 2961, 3827, 4181, 4623, 5473, 5611, 5777, 6119, 6593, 6601, 6721, 7161, 7567, 8149, 8473, 8961, 9729, 9881
Offset: 1

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1)*J(m,D) (mod m) are called generalized Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=3, D=5 and k=3, while U(m) is A001906(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A001906, A071904, A340097 (a=3, b=1, k=1), A340122 (a=3, b=1, k=2).
Cf. A340240 (a=5, b=1, k=3), A340241 (a=7, b=1, k=3).

Programs

  • Mathematica
    Select[Range[3, 10000, 2], CoprimeQ[#, 5] && CompositeQ[#] &&  Divisible[ ChebyshevU[3*#  - JacobiSymbol[#, 5]  - 1, 3/2] - 3*JacobiSymbol[#, 5],  #] &]

A340240 Odd composite integers m such that A004254(3*m-J(m,21)) == 5*J(m,21) (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.

Original entry on oeis.org

55, 407, 527, 529, 551, 559, 965, 1199, 1265, 1633, 1807, 1919, 1961, 3401, 3959, 4033, 4381, 5461, 5777, 5977, 5983, 6049, 6233, 6439, 6479, 7141, 7195, 7645, 7999, 8639, 8695, 8993, 9265, 9361, 11663, 11989, 12209, 12265, 13019, 13021, 13199, 14023, 14465, 14491
Offset: 1

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property U(k*m-J(m,D)) == U(k-1)*J(m,D) (mod m) are called generalized Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=5, D=21 and k=3, while U(m) is A004254(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A004254, A071904, A340098 (a=5, b=1, k=1), A340123 (a=5, b=1, k=2).
Cf. A340239 (a=3, b=1, k=3), A340241 (a=7, b=1, k=3).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 21] && CompositeQ[#] &&  Divisible[ ChebyshevU[3*# - JacobiSymbol[#, 21] - 1, 5/2] - 5*JacobiSymbol[#, 21],  #] &]