A370081 Number of left-labeled (3,n)-bipartite graphs.
1, 8, 25, 60, 129, 256, 484, 872, 1512, 2532, 4110, 6484, 9975, 14992, 22065, 31860, 45207, 63126, 86868, 117934, 158130, 209600, 274874, 356916, 459189, 585694, 741053, 930566, 1160285, 1437090, 1768784, 2164158, 2633108, 3186722, 3837386, 4598894, 5486579, 6517410, 7710149
Offset: 0
Keywords
Examples
For n = 1, a(1) = 8 and there are 8 left-labeled (3,1)-bipartite graphs. Suppose the left vertices are labeled a, b, c and the right vertex is labeled d. The left-labeled (3,1)-bipartite graphs are: (1) Empty bipartite graph (no edges) (2) Place an edge between a and d. (3) Place an edge between b and d. (4) Place an edge between c and d. (5) Place an edge between a and d, and b and d. (6) Place an edge between a and d, and c and d. (7) Place an edge between b and d, and c and d. (8) Place an edge between a and d, b and d, and c and d. For n = 2, a(2) = 25 and there are 25 left-labeled (3,2)-bipartite graphs. These left-labeled (3,2)-bipartite graphs are listed in the publication that is given in the reference section.
Links
- Yavuz Oruc, Table of n, a(n) for n = 0..50
- A. Atmaca and A. Yavuz Oruc, On The Number Of Labeled Bipartite Graphs, arXiv:2402.08053 [math.CO], 2024.
Crossrefs
Cf. A002727.
Programs
-
Mathematica
ct1[n_] := Binomial[n+7,7]+(3*(n+4)*(2*n^4+32*n^3+172*n^2+352*n+15*(-1)^n+225))/960; ct2[n_] := (4*n^3+30*n^2+68*n-3+3*(-1)^n)/24; B3rmod0 = Function[n,(1/6)(ct1[n] + (n^3 + 12*n^2 + 45*n + 54)/27)+ct2[n]] /@Range[0,50,3]; B3rmod1 = Function[n,(1/6)(ct1[n] + (n^3 + 12*n^2 + 45*n + 50)/27)+ct2[n]] /@Range[1,50,3]; B3rmod2 = Function[n,(1/6)(ct1[n] + (n^3 + 12*n^2 + 39*n + 28)/27)+ct2[n]] /@Range[2,50,3]; B3r = {B3rmod0, B3rmod1, B3rmod2}~Flatten~{2, 1}
Formula
Let
ct1(n) = binomial(n+7,7) + ((n+4)*(2*n^4 + 32*n^3 + 172*n^2 + 352*n + 15*(-1)^n + 225))/320,
ct2(n) = (4*n^3 + 30*n^2 + 68*n - 3 + 3*(-1)^n)/24,
and
f(n) = 0 if n mod 3 = 0
= 2/81 if n mod 3 = 1
= n/27 + 13/81 if n mod 3 = 2
Then
a(n) = (1/6)*(ct1(n) + (n^3+12*n^2+45*n+54)/27)+ct2(n)-f(n)
Comments