cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005142 Number of connected bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 44, 182, 730, 4032, 25598, 212780, 2241730, 31193324, 575252112, 14218209962, 472740425319, 21208887576786, 1286099113807999, 105567921675718772, 11743905783670560579, 1772771666309380358809, 363526952035325887859823, 101386021137641794979558045
Offset: 0

Views

Author

Keywords

Comments

Also, the number of unlabeled connected bicolored graphs having n nodes; the color classes may be interchanged. - Robert W. Robinson
Also, for n>1, number of connected triangle-free graphs on n nodes with chromatic number 2. - Keith M. Briggs, Mar 21 2006 (cf. A116079).
Also, first diagonal of triangle in A126736.
EULER transform of [1, 1, 1, 3, 5, 17, ...] is A033995 [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* See the links section. *)

Formula

a(2*n+1) = A318870(2*n+1)/2, a(2*n) = (a(n) + A318869(n) + A318870(2*n) - A318870(n))/2. - Andrew Howroyd, Sep 04 2018

Extensions

More terms from Ronald C. Read.
a(0)=1 prepended by Max Alekseyev, Jun 24 2013
Terms a(21) and beyond from Andrew Howroyd, Sep 04 2018

A049312 Number of graphs with a distinguished bipartite block, by number of vertices.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 94, 258, 815, 3038, 13804, 78760, 580456, 5647602, 73645352, 1297920850, 31031370360, 1007551636038, 44432872400460, 2661065508648436, 216457998880015366, 23920728651724212120, 3593384834863975164882, 734240676501745813835934
Offset: 0

Views

Author

Keywords

Comments

Calculate number of connected bipartite graphs + number of connected bipartite graphs with no duality automorphism, apply EULER transform.
Inverse Euler transform is A318870.

Examples

			a(2)=4: null graph with 0, 1 or 2 vertices in the distinguished block and complete graph with 1 vertex in distinguished block.
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

Row sums of A028657.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(igcd(i, j)*
          coeff(s, x, i)* coeff(t, x, j), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t)), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (n, k)-> g(min(n, k), abs(n-k)):
    a:= d-> add(A(n, d-n), n=0..d):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Flatten @ Table[ Map[ Function[ {p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[ Sum[ 2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+k, n+k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n-k]];
    a[d_] := Sum[A[n, d-n], {n, 0, d}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)

Formula

a(n) ~ 1/n! A047863(n) = 1/n! Sum_{k=0..n} binomial(n,k) * 2^(k(n-k)) (see Wright; see also Thm. 3.7 of the Troyka link, which cites Wright). - Justin M. Troyka, Oct 29 2018

Extensions

More terms from Vladeta Jovovic, Jun 17 2000

A007776 Number of connected posets with n elements of height 1.

Original entry on oeis.org

1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2

Views

Author

Georg Wambach (gw(AT)informatik.Uni-Koeln.de)

Keywords

Comments

Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018

Crossrefs

Cf. A005142, A002031 (labeled case), A048194, A049312, A055192, A318870, column 1 of A342500.

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018

Extensions

More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018

A318869 Inverse Euler transform of A122082.

Original entry on oeis.org

1, 2, 2, 8, 37, 270, 3049, 56576, 1795917, 100752972, 10189362127, 1879720761478, 637617233746767, 400169631649617320, 467115844246535037894, 1018822456144129013291710, 4169121243929999971120036590, 32126195519194538602120203293590
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

This sequence is an intermediate step in the computation of A005142 and A123549.
The combinatoric interpretation is that of connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged plus pairs of identical connected bicolored graphs on n nodes each which are not invariant when the two color classes are interchanged. The former is A123549(n) and the later is A005142(n) for odd n and A005142(n) - A123549(n/2) for even n.

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total @ Quotient[v+1, 2]
    b[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Join[{1}, EULERi[Array[b, 20]]] (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)

A123549 Number of unlabeled connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 1, 2, 7, 36, 265, 3039, 56532, 1795771, 100752242, 10189358360, 1879720735880, 637617233537026, 400169631647375590, 467115844246503901102, 1018822456144128438039598, 4169121243929999956903622399, 32126195519194538601647462868271
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums of A123550.

Programs

Formula

a(n) = 2*A005142(2*n) - A318870(2*n). - Andrew Howroyd, Sep 04 2018

Extensions

a(0)=1 prepended and terms a(8) and beyond from Andrew Howroyd, Sep 04 2018
Showing 1-5 of 5 results.