cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318870 Number of connected bipartite graphs on n unlabeled nodes with a distinguished bipartite block.

Original entry on oeis.org

1, 2, 1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

Essentially the same as A007776. - Georg Fischer, Oct 02 2018

Examples

			a(1) = 2 because the single node can either be in the distinguished bipartite block or not.
a(2) = 1 because the only connected bipartite graph on two nodes is the complete graph on two nodes.
a(3) = 2 because the only connected bipartite graph on three nodes is the path graph on three nodes and there is a choice about which nodes are in the distinguished block.
		

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    Join[{1}, EULERi[Array[b, 23]]] (* Jean-François Alcover, Sep 13 2018, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A049312.

A318869 Inverse Euler transform of A122082.

Original entry on oeis.org

1, 2, 2, 8, 37, 270, 3049, 56576, 1795917, 100752972, 10189362127, 1879720761478, 637617233746767, 400169631649617320, 467115844246535037894, 1018822456144129013291710, 4169121243929999971120036590, 32126195519194538602120203293590
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

This sequence is an intermediate step in the computation of A005142 and A123549.
The combinatoric interpretation is that of connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged plus pairs of identical connected bicolored graphs on n nodes each which are not invariant when the two color classes are interchanged. The former is A123549(n) and the later is A005142(n) for odd n and A005142(n) - A123549(n/2) for even n.

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total @ Quotient[v+1, 2]
    b[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Join[{1}, EULERi[Array[b, 20]]] (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)

A363846 Number of connected bipartite graphs on 2n nodes with a marked bipartite set of size n.

Original entry on oeis.org

1, 1, 2, 13, 150, 3529, 194203, 29350896, 13668966399, 20662731749804, 103588456044907944, 1744955436868541083098, 99859125842603176324368784, 19611138475504485904873456937288, 13340730475029359536419515017040194246, 31706419735128559894860278029259121951682970, 265351742295121848168241791689670791068746978140331
Offset: 0

Views

Author

Max Alekseyev, Jun 24 2023

Keywords

Comments

Also, number of n X n binary matrices up to permutations of rows and columns, representing the reduced adjacency matrices of connected bipartite graphs (cf. A002724).

Crossrefs

Diagonal of the rectangular array described in A363845.

Formula

a(n) = A363845(2n, n).
Showing 1-3 of 3 results.