cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005142 Number of connected bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 44, 182, 730, 4032, 25598, 212780, 2241730, 31193324, 575252112, 14218209962, 472740425319, 21208887576786, 1286099113807999, 105567921675718772, 11743905783670560579, 1772771666309380358809, 363526952035325887859823, 101386021137641794979558045
Offset: 0

Views

Author

Keywords

Comments

Also, the number of unlabeled connected bicolored graphs having n nodes; the color classes may be interchanged. - Robert W. Robinson
Also, for n>1, number of connected triangle-free graphs on n nodes with chromatic number 2. - Keith M. Briggs, Mar 21 2006 (cf. A116079).
Also, first diagonal of triangle in A126736.
EULER transform of [1, 1, 1, 3, 5, 17, ...] is A033995 [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* See the links section. *)

Formula

a(2*n+1) = A318870(2*n+1)/2, a(2*n) = (a(n) + A318869(n) + A318870(2*n) - A318870(n))/2. - Andrew Howroyd, Sep 04 2018

Extensions

More terms from Ronald C. Read.
a(0)=1 prepended by Max Alekseyev, Jun 24 2013
Terms a(21) and beyond from Andrew Howroyd, Sep 04 2018

A318870 Number of connected bipartite graphs on n unlabeled nodes with a distinguished bipartite block.

Original entry on oeis.org

1, 2, 1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

Essentially the same as A007776. - Georg Fischer, Oct 02 2018

Examples

			a(1) = 2 because the single node can either be in the distinguished bipartite block or not.
a(2) = 1 because the only connected bipartite graph on two nodes is the complete graph on two nodes.
a(3) = 2 because the only connected bipartite graph on three nodes is the path graph on three nodes and there is a choice about which nodes are in the distinguished block.
		

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    Join[{1}, EULERi[Array[b, 23]]] (* Jean-François Alcover, Sep 13 2018, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A049312.

A123549 Number of unlabeled connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 1, 2, 7, 36, 265, 3039, 56532, 1795771, 100752242, 10189358360, 1879720735880, 637617233537026, 400169631647375590, 467115844246503901102, 1018822456144128438039598, 4169121243929999956903622399, 32126195519194538601647462868271
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums of A123550.

Programs

Formula

a(n) = 2*A005142(2*n) - A318870(2*n). - Andrew Howroyd, Sep 04 2018

Extensions

a(0)=1 prepended and terms a(8) and beyond from Andrew Howroyd, Sep 04 2018
Showing 1-3 of 3 results.