A000684
Number of colored labeled n-node graphs with 2 interchangeable colors.
Original entry on oeis.org
1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..100 (first 32 terms from R. W. Robinson)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (2*A000684)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- A. Nymeyer and R. W. Robinson, Tabulation of the Numbers of Labeled Bipartite Blocks and Related Classes of Bicolored Graphs, 1982 [Annotated scanned copy of unpublished MS and letter from R.W.R.]
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
-
With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
-
a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009
a(15) onwards added by
N. J. A. Sloane, Oct 19 2006 from the Robinson reference
A002031
Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.
Original entry on oeis.org
2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 2
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25); # Alois P. Heinz, Sep 14 2008
-
terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)
A005333
Number of 2-colored connected labeled graphs with n vertices of the first color and n vertices of the second color.
Original entry on oeis.org
1, 5, 205, 36317, 23679901, 56294206205, 502757743028605, 17309316971673776957, 2333508400614646874734621, 1243000239291173897659593056765, 2629967962392578020413552363565293565, 22170252073745058975210005804934596601690557
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- I. Broere, W. Imrich, R. Kalinowski, and M. Pilsniak, Asymmetric colorings of products of graphs and digraphs, Discrete Applied Mathematics 266 (p. 56-64), 2019.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
-
c[0, 1] = c[1, 0] = 1; c[0, ] = c[, 0] = 0; c[n_, m_] := c[n, m] = 2^(n*m) - Sum[If[k < n || j < m, Binomial[n - 1, k - 1]*Binomial[m, j]* 2^((n - k)*(m - j))*c[k, j], 0], {k, 1, n}, {j, 0, m}];
a[n_] := c[n, n];
Array[a, 12] (* Jean-François Alcover, Sep 03 2019 *)
A047864
Number of labeled bipartite graphs with n nodes.
Original entry on oeis.org
1, 1, 2, 7, 41, 376, 5177, 103237, 2922446, 116011231, 6433447397, 498234407452, 54007795331921, 8213123246906761, 1756336596363006842, 528975889250504033527, 224688018516023267969441, 134708289561117007261966816
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
- H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 80, Eq. 3.11.5.
- T. D. Noe, Table of n, a(n) for n = 0..50
- Vladislav Bína and Jiří Přibil, Note on enumeration of labeled split graphs, Comment. Math. Univ. Carolin. 56,2 (2015) 133-137.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs. [Broken link]
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 32.
- Eric Weisstein's World of Mathematics, n-Colorable Graph.
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 89, Eq. 3.11.5.
-
nn = 20; a = Sum[Sum[Binomial[n, k] 2^(k (n - k)), {k, 0, n}] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[a^(1/2), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 15 2012 *)
-
N=18; x='x+O('x^N); Vec(serlaplace(sqrt(sum(n=0, N, exp(2^n*x)*x^n/n!)))) \\ Gheorghe Coserea, Nov 13 2017
A322278
Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.
Original entry on oeis.org
1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1
Triangle begins:
1;
0, 1;
0, 3, 4;
0, 19, 84, 38;
0, 195, 2470, 3140, 728;
0, 3031, 108390, 307390, 186360, 26704;
0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256;
...
-
M(n, K=n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k))))));
Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!));
}
my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))
A361951
Triangle read by rows: T(n,k) is the number of labeled weakly graded (ranked) posets with n elements and rank k.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 86, 108, 24, 0, 1, 840, 2190, 840, 120, 0, 1, 11642, 55620, 31800, 6840, 720, 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040, 0, 1, 6285806, 82938828, 80529624, 24509520, 4626720, 584640, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 12, 6;
0, 1, 86, 108, 24;
0, 1, 840, 2190, 840, 120;
0, 1, 11642, 55620, 31800, 6840, 720;
0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040;
...
-
\\ Here C(n) gives columns of A361950 as vector of e.g.f.'s.
S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
C(n,m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
T(n)={my(c=C(n), b=vector(n+1, h, c[h]/c[max(h-1,1)])); Mat(vector(n+1, h, Col(serlaplace(b[h]-if(h>1, b[h-1])), -n-1)))}
{ my(A=T(7)); for(n=1, #A, print(A[n, 1..n])) }
A004100
Number of labeled nonseparable bipartite graphs on n nodes.
Original entry on oeis.org
0, 1, 0, 3, 10, 355, 6986, 297619, 15077658, 1120452771, 111765799882, 15350524923547, 2875055248515242, 738416821509929731, 260316039943139322858, 126430202628042630866787, 84814075550928212558332858, 78847417416749666369637926851
Offset: 1
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..100 (terms 1..32 from R. W. Robinson)
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
- A. Nymeyer and R. W. Robinson, Tabulation of the Numbers of Labeled Bipartite Blocks and Related Classes of Bicolored Graphs, 1982 [Annotated scanned copy of unpublished MS and letter from R.W.R.]
-
b[n_] := Log[Sum[Exp[2^k*x + O[x]^n]*x^k/k!, {k, 0, n}]/2];
seq[n_] := CoefficientList[-Log[2] + Log[x/InverseSeries[x*D[b[n], x]]], x]*Table[(2k)!!, {k, 0, n-2}];
seq[19] (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
-
\\ here b(n) is A001832 as e.g.f.
b(n)={log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2}
seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(b(n))))), -n)} \\ Andrew Howroyd, Sep 26 2018
a(16) onwards added by
N. J. A. Sloane, Oct 19 2006 from the Robinson reference
A005334
Number of labeled nonseparable (or 2-connected) bicolored graphs with n nodes of the first color and n nodes of the second color.
Original entry on oeis.org
1, 1, 34, 7037, 6317926, 21073662977, 251973418941994, 10878710974408306717, 1727230695707098000548430, 1028983422758641650604161840065, 2342608062302306704492272616530549874, 20683716767972841770515007707311751484424893
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
Main diagonal of
A123301 as an array.
A005335
Number of labeled nonseparable (or 2-connected) bipartite graphs with 2n nodes and n nodes in each part.
Original entry on oeis.org
1, 3, 340, 246295, 796058676, 9736032295374, 432386386904461704, 70004505120317453723895, 41988978212639552393332333300, 95055430627597798399511262461524570, 826275345303020411581696428212189429357784, 27965998400207183955394390590886658323558240477654
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
Main diagonal of
A123474 as an array.
A084283
Number of connected labeled 3-colorable (i.e., chromatic number <= 3) graphs on n nodes.
Original entry on oeis.org
1, 1, 4, 37, 667, 21886, 1262719, 125387767, 21009091072, 5809425721381, 2596693747042999, 1844571022305443422
Offset: 1
Showing 1-10 of 19 results.
Comments