cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000684 Number of colored labeled n-node graphs with 2 interchangeable colors.

Original entry on oeis.org

1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1

Views

Author

Keywords

Comments

a(n) = A058872(n) + 1. This sequence counts the empty graph on n nodes which is not allowed in A058872. - Geoffrey Critzer, Oct 07 2012

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

2 * A000683(n) + 1.

Programs

  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
  • PARI
    a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - 2^n*x)^n. - Paul D. Hanna, Sep 14 2009
G.f.: 1/(W(0)-x) where W(k) = x*(x*2^k-1)^k - (x*2^(k+1)-1)^(k+1) + x*((2*x*2^k-1)^(2*k+2))/W(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
From Peter Bala, Apr 01 2013: (Start)
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)*2^(k*(n-k)).
a(n) = Sum_{k = 0..n} 2^k*A111636(n,k).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with an offset of 0) is E(x)*E(2*x) = Sum_{n >= 0} a(n+1)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 13*x^2/(2!*2) + 81*x^3/(3!*2^3) + 721*x^4/(4!*2^6) + .... Cf. A134531. (End)

Extensions

a(15) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference

A002031 Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.

Original entry on oeis.org

2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 2

Views

Author

Keywords

Comments

Also number of labeled connected graphs with 2-colored nodes with no isolated nodes where black nodes are only connected to white nodes and vice versa.
In- or outdegree zero implies loops are not admitted. Multi-arcs are not admitted. - R. J. Mathar, Nov 18 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001831, A001832, A002032, A047863, A052332, A007776 (unlabeled case). Essentially the same as A002027.

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25);  # Alois P. Heinz, Sep 14 2008
  • Mathematica
    terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)

Formula

Logarithmic transform of A052332.
E.g.f.: log(Sum(exp((2^n-2)*x)*x^n/n!, n=0..infinity)). - Vladeta Jovovic, May 28 2004
a(n) = f(n,2) using functions defined in A002032. - Sean A. Irvine, May 29 2013

Extensions

More terms, formula and new title from Christian G. Bower, Dec 15 1999
Corrected by Vladeta Jovovic, Apr 12 2003

A005333 Number of 2-colored connected labeled graphs with n vertices of the first color and n vertices of the second color.

Original entry on oeis.org

1, 5, 205, 36317, 23679901, 56294206205, 502757743028605, 17309316971673776957, 2333508400614646874734621, 1243000239291173897659593056765, 2629967962392578020413552363565293565, 22170252073745058975210005804934596601690557
Offset: 1

Views

Author

Keywords

Comments

Conjecture: if n > 1, then a(n) is the number of labeled digraphs D (allowing self-loops) with n vertices such that D|D' and D'|D are (strongly) connected (see preliminaries of Broere et al.). - Lorenzo Sauras Altuzarra, Sep 17 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A262307 and A227322.

Programs

  • Mathematica
    c[0, 1] = c[1, 0] = 1; c[0, ] = c[, 0] = 0; c[n_, m_] := c[n, m] = 2^(n*m) - Sum[If[k < n || j < m, Binomial[n - 1, k - 1]*Binomial[m, j]* 2^((n - k)*(m - j))*c[k, j], 0], {k, 1, n}, {j, 0, m}];
    a[n_] := c[n, n];
    Array[a, 12] (* Jean-François Alcover, Sep 03 2019 *)

Formula

a(n) = c(n,n) where c(0,1) = 1, c(0,m) = 0, c(n,m) = 2^(n*m) - Sum_{1 <= k <= n, 0 <= j <= m, k < n or j < m} C(n-1, k-1) * C(m, j) * 2^((n-k)*(m-j)) * c(k, j). - Sean A. Irvine, May 11 2016

Extensions

More precise definition by Pavel Irzhavski, Jul 09 2013
More terms from Sean A. Irvine, May 11 2016

A047864 Number of labeled bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 41, 376, 5177, 103237, 2922446, 116011231, 6433447397, 498234407452, 54007795331921, 8213123246906761, 1756336596363006842, 528975889250504033527, 224688018516023267969441, 134708289561117007261966816
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 80, Eq. 3.11.5.

Crossrefs

Row sums of A117279.
The unlabeled version is A033995.

Programs

  • Mathematica
    nn = 20; a = Sum[Sum[Binomial[n, k] 2^(k (n - k)), {k, 0, n}] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[a^(1/2), {x, 0, nn}], x]  (* Geoffrey Critzer, Jan 15 2012 *)
  • PARI
    N=18; x='x+O('x^N); Vec(serlaplace(sqrt(sum(n=0, N, exp(2^n*x)*x^n/n!)))) \\ Gheorghe Coserea, Nov 13 2017

Formula

E.g.f.: sqrt( e.g.f. for A047863 ).

A322278 Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1

Views

Author

Andrew Howroyd, Dec 01 2018

Keywords

Comments

Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with k parts. See A322064 for the definition of stable partition.

Examples

			Triangle begins:
  1;
  0,     1;
  0,     3,       4;
  0,    19,      84,       38;
  0,   195,    2470,     3140,      728;
  0,  3031,  108390,   307390,   186360,    26704;
  0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256;
  ...
		

Crossrefs

Row sums are A322064.
Columns k=2..4 are A001832(for n > 1), A322330, A322331.
Right diagonal is A001187.

Programs

  • PARI
    M(n, K=n)={
      my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
      my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
      my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k))))));
      Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!));
    }
    my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))

Formula

T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*A322279(n,j).

A361951 Triangle read by rows: T(n,k) is the number of labeled weakly graded (ranked) posets with n elements and rank k.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 86, 108, 24, 0, 1, 840, 2190, 840, 120, 0, 1, 11642, 55620, 31800, 6840, 720, 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040, 0, 1, 6285806, 82938828, 80529624, 24509520, 4626720, 584640, 40320
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.
T(n,k) corresponds to a(k,n) = b(k,n) - b(k-1,n) in the Klarner reference. Figure 2 shows the posets of row n=4.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,      2;
  0, 1,     12,       6;
  0, 1,     86,     108,      24;
  0, 1,    840,    2190,     840,    120;
  0, 1,  11642,   55620,   31800,   6840,   720;
  0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040;
  ...
		

Crossrefs

Row sums are A001833.
Column k=2 is A055531.
Partial row sums include A000007, A000012, A001831, A001832.
Main diagonal is A000142.
The unlabeled version is A361953.

Programs

  • PARI
    \\ Here C(n) gives columns of A361950 as vector of e.g.f.'s.
    S(M)={matrix(#M, #M, i, j, sum(k=0,  i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
    C(n,m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
    T(n)={my(c=C(n), b=vector(n+1, h, c[h]/c[max(h-1,1)])); Mat(vector(n+1, h, Col(serlaplace(b[h]-if(h>1, b[h-1])), -n-1)))}
    { my(A=T(7)); for(n=1, #A, print(A[n, 1..n])) }

Formula

E.g.f. of column k >=2: C(k,x)/C(k-1,x) - C(k-1,x)/C(k-2,x) where C(k,x) is the e.g.f. of column k of A361950.

A004100 Number of labeled nonseparable bipartite graphs on n nodes.

Original entry on oeis.org

0, 1, 0, 3, 10, 355, 6986, 297619, 15077658, 1120452771, 111765799882, 15350524923547, 2875055248515242, 738416821509929731, 260316039943139322858, 126430202628042630866787, 84814075550928212558332858, 78847417416749666369637926851
Offset: 1

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := Log[Sum[Exp[2^k*x + O[x]^n]*x^k/k!, {k, 0, n}]/2];
    seq[n_] := CoefficientList[-Log[2] + Log[x/InverseSeries[x*D[b[n], x]]], x]*Table[(2k)!!, {k, 0, n-2}];
    seq[19] (* Jean-François Alcover, Sep 04 2019, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001832 as e.g.f.
    b(n)={log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2}
    seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(b(n))))), -n)} \\ Andrew Howroyd, Sep 26 2018

Extensions

a(16) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference

A005334 Number of labeled nonseparable (or 2-connected) bicolored graphs with n nodes of the first color and n nodes of the second color.

Original entry on oeis.org

1, 1, 34, 7037, 6317926, 21073662977, 251973418941994, 10878710974408306717, 1727230695707098000548430, 1028983422758641650604161840065, 2342608062302306704492272616530549874, 20683716767972841770515007707311751484424893
Offset: 1

Views

Author

Keywords

Comments

The two color classes are not interchangeable and have separate labels. Nonseparable graphs are also called blocks.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A123301 as an array.

Extensions

Name clarified and more terms added by Andrew Howroyd, Jan 03 2021

A005335 Number of labeled nonseparable (or 2-connected) bipartite graphs with 2n nodes and n nodes in each part.

Original entry on oeis.org

1, 3, 340, 246295, 796058676, 9736032295374, 432386386904461704, 70004505120317453723895, 41988978212639552393332333300, 95055430627597798399511262461524570, 826275345303020411581696428212189429357784, 27965998400207183955394390590886658323558240477654
Offset: 1

Views

Author

Keywords

Comments

Nonseparable graphs are also called blocks.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A123474 as an array.
Cf. A005334.

Formula

a(n) = binomial(2*n, n) * A005334(n) / 2. - Andrew Howroyd, Jan 03 2021

Extensions

Name clarified and more terms added by Andrew Howroyd, Jan 03 2021

A084283 Number of connected labeled 3-colorable (i.e., chromatic number <= 3) graphs on n nodes.

Original entry on oeis.org

1, 1, 4, 37, 667, 21886, 1262719, 125387767, 21009091072, 5809425721381, 2596693747042999, 1844571022305443422
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Formula

Logarithmic transform of A084279. - Andrew Howroyd, Dec 02 2018

Extensions

a(7)-a(12) from Andrew Howroyd, Dec 02 2018
Showing 1-10 of 19 results. Next