A002501
a(n) = 7^n - 3*4^n + 2*3^n.
Original entry on oeis.org
1, 19, 205, 1795, 14221, 106819, 778765, 5581315, 39606541, 279447619, 1965098125, 13792018435, 96690872461, 677427332419, 4744368982285, 33220131761155, 232579232659981, 1628208214321219, 11398072876175245, 79788974736297475, 558532690864457101
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Better definition and more terms from Goran Kilibarda,
Vladeta Jovovic, Apr 14 2004
A002502
Number of connected relations.
Original entry on oeis.org
1, 65, 1795, 36317, 636331, 10365005, 162470155, 2495037197, 37898120011, 572284920845, 8614868501515, 129467758660877, 1943971108806091, 29175170378428685, 437752102106036875, 6567275797761209357
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
LinearRecurrence[{38,-539,3622,-11640,14400},{1,65,1795,36317,636331},20] (* Harvey P. Dale, Mar 24 2017 *)
A093732
Number of connected relations.
Original entry on oeis.org
1, 211, 14221, 636331, 23679901, 805351531, 26175881341, 831358677451, 26094426008221, 814105545191851, 25320182311228861, 786251347986776971, 24394981288950302941, 756583120577782494571, 23459491617092461686781, 727330825918603925122891
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..200
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- G. Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
- Index entries for linear recurrences with constant coefficients, signature (84,-2774,47548,-462525,2575088,-7643820,9374400).
-
Table[31^n - 5*16^n - 10*10^n + 20*9^n + 30*7^n - 60*6^n + 24*5^n, {n, 25}] (* T. D. Noe, May 29 2012 *)
-
a(n)=31^n-5*16^n-10*10^n+20*9^n+30*7^n-60*6^n+24*5^n \\ Charles R Greathouse IV, Jun 16 2015
A093733
Number of connected relations.
Original entry on oeis.org
1, 665, 106819, 10365005, 805351531, 56294206205, 3735873535339, 241600284318365, 15423235216318411, 978180744322139645, 61834480769377286059, 3902270609960140639325, 246057483524862034206091, 15508484277325946034039485, 977254123876968508188975979
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..100
- Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- G. Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
- Index entries for linear recurrences with constant coefficients, signature (-195, 15886, -726290, 20952193, -403792115, 5336718048, -48588590600, 299693200656, -1195947048240, 2785165036416, -2872859996160).
-
Table[63^n-6*32^n-15*18^n+30*17^n-10*14^n+120*11^n-120*10^n+30*9^n-270*8^n+360*7^n-120*6^n, {n,1,25}] (* G. C. Greubel, Oct 06 2017 *)
CoefficientList[Series[x (96368590080x^9+27682953984x^8-13185435000x^7+774468980x^6+ 143028190x^5-19071533x^4+626800x^3+6970x^2-470x-1)/((6x-1)(7x-1)(8x-1)(9x-1)(10x-1)(11x-1)(14x-1)(17x-1)(18x-1)(32x-1)(63x-1)),{x,0,20}],x] (* or *) LinearRecurrence[{195,-15886,726290,-20952193,403792115,-5336718048,48588590600,-299693200656,1195947048240,-2785165036416,2872859996160},{0,1,665,106819,10365005,805351531,56294206205,3735873535339,241600284318365,15423235216318411,978180744322139645},20] (* Harvey P. Dale, Sep 23 2023 *)
-
for(n=1,25, print1(63^n-6*32^n-15*18^n+30*17^n-10*14^n+120*11^n-120*10^n+30*9^n-270*8^n+360*7^n-120*6^n, ", ")) \\ G. C. Greubel, Oct 06 2017
A262307
Array read by antidiagonals: T(m,n) = number of m X n binary matrices with all 1's connected and no zero rows or columns.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 205, 65, 1, 1, 211, 1795, 1795, 211, 1, 1, 665, 14221, 36317, 14221, 665, 1, 1, 2059, 106819, 636331, 636331, 106819, 2059, 1, 1, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 1
Offset: 1
Table starts:
==========================================================================
m\n| 1 2 3 4 5 6 7
---|----------------------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 5 19 65 211 665 2059 ...
3 | 1 19 205 1795 14221 106819 778765 ...
4 | 1 65 1795 36317 636331 10365005 162470155 ...
5 | 1 211 14221 636331 23679901 805351531 26175881341 ...
6 | 1 665 106819 10365005 805351531 56294206205 3735873535339 ...
7 | 1 2059 778765 162470155 26175881341 3735873535339 502757743028605 ...
...
As a triangle, this begins:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 205, 65, 1;
1, 211, 1795, 1795, 211, 1;
1, 665, 14221, 36317, 14221, 665, 1;
1, 2059, 106819, 636331, 636331, 106819, 2059, 1;
...
Essentially same table as triangle
A227322 (where the antidiagonals only go halfway).
-
A183109[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m-j) - 1)^n, {j, 0, m}];
T[m_, n_] := A183109[m, n] - Sum[T[i, j]*A183109[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}];
Table[T[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
G(N)={my(S=matrix(N,N), T=matrix(N,N));
for(m=1,N,for(n=1,N,
S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j)));
));T}
G(7) \\ Andrew Howroyd, May 22 2017
Revised by
N. J. A. Sloane, May 26 2017, to incorporate material from
Andrew Howroyd's May 22 2017 submission (formerly
A287297), which was essentially identical to this, although giving an alternative description and more information.
A005334
Number of labeled nonseparable (or 2-connected) bicolored graphs with n nodes of the first color and n nodes of the second color.
Original entry on oeis.org
1, 1, 34, 7037, 6317926, 21073662977, 251973418941994, 10878710974408306717, 1727230695707098000548430, 1028983422758641650604161840065, 2342608062302306704492272616530549874, 20683716767972841770515007707311751484424893
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
Main diagonal of
A123301 as an array.
A226658
T(n,k)=Number of nXk 0..4 arrays of sums of 2X2 subblocks of some (n+1)X(k+1) binary array.
Original entry on oeis.org
5, 19, 19, 65, 205, 65, 211, 1795, 1795, 211, 665, 14221, 36317, 14221, 665, 2059, 106819, 636331, 636331, 106819, 2059, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 19171, 5581315, 162470155, 805351531, 805351531, 162470155
Offset: 1
Some solutions for n=3 k=4
..1..1..1..0....0..1..1..1....0..1..1..0....1..0..1..1....1..0..2..3
..3..1..1..2....1..1..2..1....1..2..2..2....1..2..3..2....1..2..2..1
..3..2..2..3....3..1..2..3....2..1..2..3....2..3..2..1....3..3..1..0
A377649
Number of edge cuts in the complete bipartite graph K_n,n.
Original entry on oeis.org
1, 11, 307, 29219, 9874531, 12425270531, 60192210392707, 1137427102035774659, 84343238614611474677731, 24650360937055503837110148611, 28488029177253725394061756995395587, 130493124785564166325712467713764904289859, 2373201513573386990964332212910033418138729872611
Offset: 1
A227322
Triangle read by rows: T(n, m) for 0 <= m <= n is the number of bipartite connected labeled graphs with parts of size n and m.
Original entry on oeis.org
1, 1, 1, 0, 1, 5, 0, 1, 19, 205, 0, 1, 65, 1795, 36317, 0, 1, 211, 14221, 636331, 23679901, 0, 1, 665, 106819, 10365005, 805351531, 56294206205, 0, 1, 2059, 778765, 162470155, 26175881341, 3735873535339, 502757743028605
Offset: 0
Triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7
0 1
1 1 1
2 0 1 5
3 0 1 19 205
4 0 1 65 1795 36317
5 0 1 211 14221 636331 23679901
6 0 1 665 106819 10365005 805351531 56294206205
7 0 1 2059 778765 162470155 26175881341 3735873535339 502757743028605
...
Consider labeled bipartite graph with parts of size 2 and 2. To make graph connected it is possible to use all four possible edges or omit any one of them. Thus T(2, 2) = 5.
A092794
Number of connected relations.
Original entry on oeis.org
1, 21, 265, 2733, 25441, 223461, 1895545, 15736413, 128882641, 1046542101, 8451838825, 68020609293, 546227922241, 4380272835141, 35094966838105, 281025802973373, 2249545355064241, 18003091856638581, 144058517372685385, 1152637601335180653
Offset: 1
-
CoefficientList[Series[-x*(4*x + 1)/((4*x - 1)*(5*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 05 2017 *)
-
x='x+O('x^50); Vec(x*(4*x+1)/((1-4*x)*(1-5*x)*(1-8*x))) \\ G. C. Greubel, Oct 05 2017
Showing 1-10 of 14 results.
Comments