cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379215 Number of minimal edge cuts in the complete bipartite graph K_{n,n}.

Original entry on oeis.org

1, 6, 24, 106, 460, 1934, 7952, 32274, 130068, 522262, 2093080, 8380442, 33538076, 134184990, 536805408, 2147352610, 8589672484, 34359214118, 137437904936, 549753716778, 2199019061292, 8796084633646, 35184355311664, 140737454800946, 562949886312500, 2251799679467574
Offset: 1

Views

Author

Eric W. Weisstein, Dec 18 2024

Keywords

Crossrefs

Cf. A377649.

Programs

  • Mathematica
    Table[Piecewise[{{1, n == 1}}, 2 ((2^(n - 1) - 1)^2 + n)], {n, 20}]
    {1} ~ Join ~ LinearRecurrence[{8, -21, 22, -8}, {6, 24, 106, 460}, 20]
    CoefficientList[Series[(1 - 2 x - 3 x^2 + 18 x^3 - 8 x^4)/((-1 + x)^2 (1 - 6 x + 8 x^2)), {x, 0, 20}], x]
  • PARI
    a(n) = if(n==1, 1, 2*(n + (2^(n-1) - 1)^2)) \\ Andrew Howroyd, Dec 18 2024

Formula

a(n) = 2*(n + (2^(n-1) - 1)^2) for n > 1. - Andrew Howroyd, Dec 18 2024
G.f.: x*(1-2*x-3*x^2+18*x^3-8*x^4)/((-1+x)^2*(1-6*x+8*x^2)). - Eric W. Weisstein, Dec 18 2024

Extensions

a(6) onwards from Andrew Howroyd, Dec 18 2024

A377650 Number of edge cuts in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

4, 1440, 18808672, 13140301136292, 552399762979005094984, 1425253513627334593833784280100
Offset: 1

Views

Author

Eric W. Weisstein, Nov 03 2024

Keywords

Crossrefs

Cf. A377649.

Extensions

a(4)-a(6) from Andrew Howroyd, May 27 2025
Showing 1-2 of 2 results.