A001047
a(n) = 3^n - 2^n.
Original entry on oeis.org
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..200
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Nathan Bliss, Ben Fulan, Stephen Lovett and Jeff Sommars, Strong divisibility, cyclotomic polynomials and iterated polynomials, Am. Math. Monthly, Vol. 120, No. 6 (2013), pp. 519-536.
- John Elias, Illustration: Sierpinski half-hexagons, Illustration: Nicomachus triangle 2^n & 3^n correlation, Koch Snowflake Fractal Configuration.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Samuele Giraudo, Combinatorial operads from monoids, Journal of Algebraic Combinatorics, Vol. 41, No. 2 (2015), pp. 493-538; arXiv preprint, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42; arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 397.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- Germain Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B, Vol. 268 (1969), pp. A577-A579.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), pp. 5503-5524.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Jon Perry, Relation to Collatz problem.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Cf.
A000225,
A016189,
A036561,
A097934,
A038876,
A127071,
A127072,
A127073,
A127074,
A002997,
A057468,
A109235,
A281890,
A329064,
A350771.
-
a001047 n = a001047_list !! n
a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
-- Reinhard Zumkeller, Jun 09 2013
-
[3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[ 3^n - 2^n, {n, 0, 25} ]
LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
-
{a(n) = 3^n - 2^n};
-
[3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
-
[lucas_number1(n, 5, 6) for n in range(26)] # Zerinvary Lajos, Apr 22 2009
A286189
Number of connected induced (non-null) subgraphs of the n X n rook graph.
Original entry on oeis.org
1, 13, 397, 55933, 31450861, 67253507293, 559182556492477, 18408476382988290493, 2416307646576708948065581, 1267404418454077249779938768413, 2658301080374793666228695738368407037, 22300360304310794054520197736231374212892413
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A285765 (queen).
-
{1} ~ Join ~ Table[g = GraphData[{"Rook", {n,n}}]; -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[n^2]}], {n, 2, 4}]
(* Second program: *)
(* b = A183109, T = A262307 *)
b[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}];
T[m_, n_] := T[m, n] = b[m, n] - Sum[T[i, j]*b[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}];
a[n_] := Sum[Binomial[n, i]*Binomial[n, j]*T[i, j], {i, 1, n}, {j, 1, n}];
Array[a, 12] (* Jean-François Alcover, Oct 11 2017, after Andrew Howroyd *)
-
G(N)={my(S=matrix(N,N), T=matrix(N,N), U=matrix(N,N));
\\ S is A183109, T is A262307, U is mxn variant of this sequence.
for(m=1,N,for(n=1,N,
S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j)));
U[m,n]=sum(i=1,m,sum(j=1,n,binomial(m,i)*binomial(n,j)*T[i,j])) ));U}
a(n)=G(n)[n,n]; \\ Andrew Howroyd, May 22 2017
A002501
a(n) = 7^n - 3*4^n + 2*3^n.
Original entry on oeis.org
1, 19, 205, 1795, 14221, 106819, 778765, 5581315, 39606541, 279447619, 1965098125, 13792018435, 96690872461, 677427332419, 4744368982285, 33220131761155, 232579232659981, 1628208214321219, 11398072876175245, 79788974736297475, 558532690864457101
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Better definition and more terms from Goran Kilibarda,
Vladeta Jovovic, Apr 14 2004
A002502
Number of connected relations.
Original entry on oeis.org
1, 65, 1795, 36317, 636331, 10365005, 162470155, 2495037197, 37898120011, 572284920845, 8614868501515, 129467758660877, 1943971108806091, 29175170378428685, 437752102106036875, 6567275797761209357
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
LinearRecurrence[{38,-539,3622,-11640,14400},{1,65,1795,36317,636331},20] (* Harvey P. Dale, Mar 24 2017 *)
A005333
Number of 2-colored connected labeled graphs with n vertices of the first color and n vertices of the second color.
Original entry on oeis.org
1, 5, 205, 36317, 23679901, 56294206205, 502757743028605, 17309316971673776957, 2333508400614646874734621, 1243000239291173897659593056765, 2629967962392578020413552363565293565, 22170252073745058975210005804934596601690557
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- I. Broere, W. Imrich, R. Kalinowski, and M. Pilsniak, Asymmetric colorings of products of graphs and digraphs, Discrete Applied Mathematics 266 (p. 56-64), 2019.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
-
c[0, 1] = c[1, 0] = 1; c[0, ] = c[, 0] = 0; c[n_, m_] := c[n, m] = 2^(n*m) - Sum[If[k < n || j < m, Binomial[n - 1, k - 1]*Binomial[m, j]* 2^((n - k)*(m - j))*c[k, j], 0], {k, 1, n}, {j, 0, m}];
a[n_] := c[n, n];
Array[a, 12] (* Jean-François Alcover, Sep 03 2019 *)
A360873
Array read by antidiagonals: T(m,n) is the number of (non-null) connected induced subgraphs in the rook graph K_m X K_n.
Original entry on oeis.org
1, 3, 3, 7, 13, 7, 15, 51, 51, 15, 31, 205, 397, 205, 31, 63, 843, 3303, 3303, 843, 63, 127, 3493, 27877, 55933, 27877, 3493, 127, 255, 14451, 233751, 943095, 943095, 233751, 14451, 255, 511, 59485, 1938517, 15678925, 31450861, 15678925, 1938517, 59485, 511
Offset: 1
Array begins:
=======================================================
m\n| 1 2 3 4 5 6 ...
---+---------------------------------------------------
1 | 1 3 7 15 31 63 ...
2 | 3 13 51 205 843 3493 ...
3 | 7 51 397 3303 27877 233751 ...
4 | 15 205 3303 55933 943095 15678925 ...
5 | 31 843 27877 943095 31450861 1033355223 ...
6 | 63 3493 233751 15678925 1033355223 67253507293 ...
...
-
\\ S is A183109, T is A262307, U is this sequence.
G(M,N=M)={ my(S=matrix(M, N), T=matrix(M, N), U=matrix(M, N));
for(m=1, M, for(n=1, N,
S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
U[m, n]=sum(i=1, m, sum(j=1, n, binomial(m, i)*binomial(n, j)*T[i, j])) )); U
}
{ my(A=G(7)); for(n=1, #A~, print(A[n,])) }
A123260
Triangle read by rows: T(n,k) = number of specially labeled bicolored connected graphs with k points in one color class and n-k points in the other class . "Special" means there are separate labels 1,2, ...,k and 1,2, ...,n-k for the two color classes (n >= 1, k = floor((n+1)/2), ..., n).
Original entry on oeis.org
1, 1, 0, 1, 0, 5, 1, 0, 19, 1, 0, 205, 65, 1, 0, 1795, 211, 1, 0, 36317, 14221, 665, 1, 0, 636331, 106819, 2059, 1, 0, 23679901, 10365005, 778765, 6305, 1, 0, 805351531, 162470155, 5581315, 19171, 1, 0, 56294206205, 26175881341, 2495037197
Offset: 1
The first few entries are:
T( 1, 0) = 1
T( 1, 1) = 1
T( 2, 0) = 0
T( 2, 1) = 1
T( 3, 0) = 0
T( 2, 2) = 5
T( 3, 1) = 1
T( 4, 0) = 0
T( 3, 2) = 19
T( 4, 1) = 1
T( 5, 0) = 0
T( 3, 3) = 205
T( 4, 2) = 65
T( 5, 1) = 1
T( 6, 0) = 0
1, 1;
0, 1, 5 ;
0, 1, 19, 205;
0, 1, 65, 1795, 36317;
0, 1, 211, 14221, ,...
0, 1, ....
0,
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
A360875
Array read by antidiagonals: T(m,n) is the number of connected dominating sets in the rook graph K_m X K_n.
Original entry on oeis.org
1, 3, 3, 7, 9, 7, 15, 39, 39, 15, 31, 177, 325, 177, 31, 63, 783, 2931, 2931, 783, 63, 127, 3369, 26077, 51465, 26077, 3369, 127, 255, 14199, 225459, 894675, 894675, 225459, 14199, 255, 511, 58977, 1901725, 15195897, 30331861, 15195897, 1901725, 58977, 511
Offset: 1
Array begins:
=======================================================
m\n| 1 2 3 4 5 6 ...
---+---------------------------------------------------
1 | 1 3 7 15 31 63 ...
2 | 3 9 39 177 783 3369 ...
3 | 7 39 325 2931 26077 225459 ...
4 | 15 177 2931 51465 894675 15195897 ...
5 | 31 783 26077 894675 30331861 1010163363 ...
6 | 63 3369 225459 15195897 1010163363 66273667449 ...
...
-
\\ S is A183109, T is A262307, U is this sequence.
G(M,N=M)={S=matrix(M, N); T=matrix(M, N); U=matrix(M, N);
for(m=1, M, for(n=1, N,
S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
U[m, n]=sum(i=1, m, binomial(m, i)*T[i, n])+sum(j=1, n, binomial(n, j)*T[m, j])-T[m, n] )); U
}
{ my(A=G(7)); for(n=1, #A~, print(A[n,])) }
A123301
Triangle read by rows: T(n,k) is the number of specially labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. "Special" means there are separate labels 1,2,...,k and 1,2,...,n-k for the two color classes (n >= 2, k = 1,...,n-1).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 34, 1, 0, 0, 1, 199, 199, 1, 0, 0, 1, 916, 7037, 916, 1, 0, 0, 1, 3889, 117071, 117071, 3889, 1, 0, 0, 1, 15982, 1535601, 6317926, 1535601, 15982, 1, 0, 0, 1, 64747, 18271947, 228842801, 228842801, 18271947
Offset: 2
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 34, 1, 0;
0, 1, 199, 199, 1, 0;
0, 1, 916, 7037, 916, 1, 0;
0, 1, 3889, 117071, 117071, 3889, 1, 0;
...
Formatted as an array:
=================================================
k/j | 1 2 3 4 5 6
--- +-------------------------------------------
1 | 1 0 0 0 0 0 ...
2 | 0 1 1 1 1 1 ...
3 | 0 1 34 199 916 3889 ...
4 | 0 1 199 7037 117071 1535601 ...
5 | 0 1 916 117071 6317926 228842801 ...
6 | 0 1 3889 1535601 228842801 21073662977 ...
...
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
-
G(n)={sum(i=0, n, x^i*(sum(j=0, n, y^j*2^(i*j)/(i!*j!)) + O(y*y^n))) + O(x*x^n)}
\\ this switches x/y halfway through because PARI only does serreverse in x.
B(n)={my(p=log(G(n))); p=subst(deriv(p,y), x, serreverse(x*deriv(p,x))); p=substvec(p, [x,y], [y,x]); intformal(log(x/serreverse(x*p)))}
M(n)={my(p=B(n)); matrix(n,n,i,j,polcoef(polcoef(p,j),i)*i!*j!)}
{ my(A=M(6)); for(n=1, #A~, print(A[n,])) } \\ Andrew Howroyd, Jan 04 2021
A123474
Triangle read by rows: T(n,k) = number of labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. The classes are interchangeable if k = n-k. Here n >= 2, k=1..n-1.
Original entry on oeis.org
1, 0, 0, 0, 3, 0, 0, 10, 10, 0, 0, 15, 340, 15, 0, 0, 21, 6965, 6965, 21, 0, 0, 28, 51296, 246295, 51296, 28, 0, 0, 36, 326676, 14750946, 14750946, 326676, 36, 0, 0, 45, 1917840, 322476210, 796058676, 322476210, 1917840, 45, 0, 0, 55, 10683255
Offset: 2
Triangle begins:
1;
0, 0;
0, 3, 0;
0, 10, 10, 0;
0, 15, 340, 15, 0;
0, 21, 6965, 6965, 21, 0;
0, 28, 51296, 246295, 51296, 28, 0;
...
Formatted as an array:
==========================================================
m/n | 1 2 3 4 5 6
----+-----------------------------------------------------
1 | 1 0 0 0 0 0 ...
2 | 0 3 10 15 21 28 ...
3 | 0 10 340 6965 51296 326676 ...
4 | 0 15 6965 246295 14750946 322476210 ...
5 | 0 21 51296 14750946 796058676 105725374062 ...
6 | 0 28 326676 322476210 105725374062 9736032295374 ...
...
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
Showing 1-10 of 11 results.
Comments