cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360873 Array read by antidiagonals: T(m,n) is the number of (non-null) connected induced subgraphs in the rook graph K_m X K_n.

Original entry on oeis.org

1, 3, 3, 7, 13, 7, 15, 51, 51, 15, 31, 205, 397, 205, 31, 63, 843, 3303, 3303, 843, 63, 127, 3493, 27877, 55933, 27877, 3493, 127, 255, 14451, 233751, 943095, 943095, 233751, 14451, 255, 511, 59485, 1938517, 15678925, 31450861, 15678925, 1938517, 59485, 511
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Examples

			Array begins:
=======================================================
m\n|  1    2      3        4          5           6 ...
---+---------------------------------------------------
1  |  1    3      7       15         31          63 ...
2  |  3   13     51      205        843        3493 ...
3  |  7   51    397     3303      27877      233751 ...
4  | 15  205   3303    55933     943095    15678925 ...
5  | 31  843  27877   943095   31450861  1033355223 ...
6  | 63 3493 233751 15678925 1033355223 67253507293 ...
  ...
		

Crossrefs

Main diagonal is A286189.
Rows 1..2 are A000225, A360874.

Programs

  • PARI
    \\ S is A183109, T is A262307, U is this sequence.
    G(M,N=M)={ my(S=matrix(M, N), T=matrix(M, N), U=matrix(M, N));
    for(m=1, M, for(n=1, N,
      S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
      T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
      U[m, n]=sum(i=1, m, sum(j=1, n, binomial(m, i)*binomial(n, j)*T[i, j])) )); U
    }
    { my(A=G(7)); for(n=1, #A~, print(A[n,])) }

Formula

T(m,n) = Sum_{i=1..m} Sum_{j=1..n} binomial(m, i) * binomial(n, j) * A262307(i, j).
T(m,n) = T(n,m).

A289196 Number of connected dominating sets in the n X n rook graph.

Original entry on oeis.org

1, 9, 325, 51465, 30331861, 66273667449, 556170787050565, 18374555799096912585, 2414861959450912233421141, 1267166974391002542218440851129, 2658149210218078451926703769353958085, 22299979556058598891936157095746389850916425
Offset: 1

Views

Author

Eric W. Weisstein, Jun 28 2017

Keywords

Comments

A set of vertices in the n X n rook graph can be represented as a n X n binary matrix. The vertex set will be dominating if either every row contains a 1 or every column contains a 1. - Andrew Howroyd, Jul 18 2017

Crossrefs

Main diagonal of A360875.

Programs

  • Mathematica
    (* b = A183109, T = A262307 *) b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}]; T[, 1] = T[1, ] = 1; T[m_, n_] := T[m, n] = b[m, n] - Sum[T[i, j]*b[m-i, n-j]*Binomial[m-1, i-1]*Binomial[n, j], {i, 1, m-1}, {j, 1, n-1}]; a[n_] := T[n, n] + 2*Sum[ Binomial[n, k]*T[n, k], {k, 1, n-1}]; Array[a, 12] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
  • PARI
    G(N)={S=matrix(N, N); T=matrix(N, N); U=matrix(N, N);
    \\ S is A183109, T is A262307, U is m X n variant of this sequence.
    for(m=1, N, for(n=1, N,
    S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
    T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
    U[m, n]=sum(i=1, m, binomial(m, i)*T[i, n])+sum(j=1, n, binomial(n,j)*T[m, j])-T[m,n] )); U}
    a(n)=G(n)[n, n]; \\ Andrew Howroyd, Jul 18 2017

Formula

a(n) = A262307(n,n) + 2*Sum_{k=1..n-1} binomial(n,k) * A262307(n,k). - Andrew Howroyd, Jul 18 2017

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jul 18 2017

A360876 Number of connected dominating sets in the 2 X n rook graph.

Original entry on oeis.org

3, 9, 39, 177, 783, 3369, 14199, 58977, 242463, 989529, 4017159, 16245777, 65514543, 263652489, 1059392919, 4251920577, 17050729023, 68332056249, 273715645479, 1096024843377, 4387586157903, 17560804984809, 70274600998839, 281192547174177, 1125052618233183
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Crossrefs

Row 2 of A360875.
Cf. A360874.

Programs

  • Mathematica
    LinearRecurrence[{8, -19, 12}, {3, 9, 39}, 30] (* Paolo Xausa, Oct 03 2024 *)
  • PARI
    Vec(3*(1 - 5*x + 8*x^2)/((1 - x)*(1 - 3*x)*(1 - 4*x)) + O(x^25))

Formula

a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n > 3.
G.f.: 3*x*(1 - 5*x + 8*x^2)/((1 - x)*(1 - 3*x)*(1 - 4*x)).
Showing 1-3 of 3 results.