cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360875 Array read by antidiagonals: T(m,n) is the number of connected dominating sets in the rook graph K_m X K_n.

Original entry on oeis.org

1, 3, 3, 7, 9, 7, 15, 39, 39, 15, 31, 177, 325, 177, 31, 63, 783, 2931, 2931, 783, 63, 127, 3369, 26077, 51465, 26077, 3369, 127, 255, 14199, 225459, 894675, 894675, 225459, 14199, 255, 511, 58977, 1901725, 15195897, 30331861, 15195897, 1901725, 58977, 511
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Examples

			Array begins:
=======================================================
m\n|  1    2      3        4          5           6 ...
---+---------------------------------------------------
1  |  1    3      7       15         31          63 ...
2  |  3    9     39      177        783        3369 ...
3  |  7   39    325     2931      26077      225459 ...
4  | 15  177   2931    51465     894675    15195897 ...
5  | 31  783  26077   894675   30331861  1010163363 ...
6  | 63 3369 225459 15195897 1010163363 66273667449 ...
  ...
		

Crossrefs

Main diagonal is A289196.
Rows 1..2 are A000225, A360876.

Programs

  • PARI
    \\ S is A183109, T is A262307, U is this sequence.
    G(M,N=M)={S=matrix(M, N); T=matrix(M, N); U=matrix(M, N);
    for(m=1, M, for(n=1, N,
      S[m, n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
      T[m, n]=S[m, n]-sum(i=1, m-1, sum(j=1, n-1, T[i, j]*S[m-i, n-j]*binomial(m-1, i-1)*binomial(n, j)));
      U[m, n]=sum(i=1, m, binomial(m, i)*T[i, n])+sum(j=1, n, binomial(n, j)*T[m, j])-T[m, n] )); U
    }
    { my(A=G(7)); for(n=1, #A~, print(A[n,])) }

Formula

T(m,n) = (Sum_{i=1..m} binomial(m,i) * A262307(n,i)) + (Sum_{j=1..n} binomial(n,j) * A262307(m,j)) - A262307(m,n).
T(m,n) = T(n,m).

A360874 Number of (non-null) connected induced subgraphs in the 2 X n rook graph.

Original entry on oeis.org

3, 13, 51, 205, 843, 3493, 14451, 59485, 243483, 991573, 4021251, 16253965, 65530923, 263685253, 1059458451, 4252051645, 17050991163, 68332580533, 273716694051, 1096026940525, 4387590352203, 17560813373413, 70274617776051, 281192580728605, 1125052685342043
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Crossrefs

Row 2 of A360873.
Cf. A360876.

Programs

  • Mathematica
    LinearRecurrence[{10, -35, 50, -24}, {3, 13, 51, 205}, 30] (* Paolo Xausa, Oct 03 2024 *)
  • PARI
    Vec((3 - 17*x + 26*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)) + O(x^25))

Formula

a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n > 4.
G.f.: x*(3 - 17*x + 26*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
Showing 1-2 of 2 results.