Original entry on oeis.org
1, 1, 1, 5, 19, 205, 1795, 36317, 636331, 23679901, 805351531, 56294206205, 3735873535339, 502757743028605, 65725984337422795, 17309316971673776957, 4485620580863732681131
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
A262307
Array read by antidiagonals: T(m,n) = number of m X n binary matrices with all 1's connected and no zero rows or columns.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 205, 65, 1, 1, 211, 1795, 1795, 211, 1, 1, 665, 14221, 36317, 14221, 665, 1, 1, 2059, 106819, 636331, 636331, 106819, 2059, 1, 1, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 1
Offset: 1
Table starts:
==========================================================================
m\n| 1 2 3 4 5 6 7
---|----------------------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 5 19 65 211 665 2059 ...
3 | 1 19 205 1795 14221 106819 778765 ...
4 | 1 65 1795 36317 636331 10365005 162470155 ...
5 | 1 211 14221 636331 23679901 805351531 26175881341 ...
6 | 1 665 106819 10365005 805351531 56294206205 3735873535339 ...
7 | 1 2059 778765 162470155 26175881341 3735873535339 502757743028605 ...
...
As a triangle, this begins:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 205, 65, 1;
1, 211, 1795, 1795, 211, 1;
1, 665, 14221, 36317, 14221, 665, 1;
1, 2059, 106819, 636331, 636331, 106819, 2059, 1;
...
Essentially same table as triangle
A227322 (where the antidiagonals only go halfway).
-
A183109[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m-j) - 1)^n, {j, 0, m}];
T[m_, n_] := A183109[m, n] - Sum[T[i, j]*A183109[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}];
Table[T[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
G(N)={my(S=matrix(N,N), T=matrix(N,N));
for(m=1,N,for(n=1,N,
S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j)));
));T}
G(7) \\ Andrew Howroyd, May 22 2017
Revised by
N. J. A. Sloane, May 26 2017, to incorporate material from
Andrew Howroyd's May 22 2017 submission (formerly
A287297), which was essentially identical to this, although giving an alternative description and more information.
A227322
Triangle read by rows: T(n, m) for 0 <= m <= n is the number of bipartite connected labeled graphs with parts of size n and m.
Original entry on oeis.org
1, 1, 1, 0, 1, 5, 0, 1, 19, 205, 0, 1, 65, 1795, 36317, 0, 1, 211, 14221, 636331, 23679901, 0, 1, 665, 106819, 10365005, 805351531, 56294206205, 0, 1, 2059, 778765, 162470155, 26175881341, 3735873535339, 502757743028605
Offset: 0
Triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7
0 1
1 1 1
2 0 1 5
3 0 1 19 205
4 0 1 65 1795 36317
5 0 1 211 14221 636331 23679901
6 0 1 665 106819 10365005 805351531 56294206205
7 0 1 2059 778765 162470155 26175881341 3735873535339 502757743028605
...
Consider labeled bipartite graph with parts of size 2 and 2. To make graph connected it is possible to use all four possible edges or omit any one of them. Thus T(2, 2) = 5.
Showing 1-3 of 3 results.
Comments