A005333
Number of 2-colored connected labeled graphs with n vertices of the first color and n vertices of the second color.
Original entry on oeis.org
1, 5, 205, 36317, 23679901, 56294206205, 502757743028605, 17309316971673776957, 2333508400614646874734621, 1243000239291173897659593056765, 2629967962392578020413552363565293565, 22170252073745058975210005804934596601690557
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- I. Broere, W. Imrich, R. Kalinowski, and M. Pilsniak, Asymmetric colorings of products of graphs and digraphs, Discrete Applied Mathematics 266 (p. 56-64), 2019.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
-
c[0, 1] = c[1, 0] = 1; c[0, ] = c[, 0] = 0; c[n_, m_] := c[n, m] = 2^(n*m) - Sum[If[k < n || j < m, Binomial[n - 1, k - 1]*Binomial[m, j]* 2^((n - k)*(m - j))*c[k, j], 0], {k, 1, n}, {j, 0, m}];
a[n_] := c[n, n];
Array[a, 12] (* Jean-François Alcover, Sep 03 2019 *)
A262307
Array read by antidiagonals: T(m,n) = number of m X n binary matrices with all 1's connected and no zero rows or columns.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 205, 65, 1, 1, 211, 1795, 1795, 211, 1, 1, 665, 14221, 36317, 14221, 665, 1, 1, 2059, 106819, 636331, 636331, 106819, 2059, 1, 1, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 1
Offset: 1
Table starts:
==========================================================================
m\n| 1 2 3 4 5 6 7
---|----------------------------------------------------------------------
1 | 1 1 1 1 1 1 1 ...
2 | 1 5 19 65 211 665 2059 ...
3 | 1 19 205 1795 14221 106819 778765 ...
4 | 1 65 1795 36317 636331 10365005 162470155 ...
5 | 1 211 14221 636331 23679901 805351531 26175881341 ...
6 | 1 665 106819 10365005 805351531 56294206205 3735873535339 ...
7 | 1 2059 778765 162470155 26175881341 3735873535339 502757743028605 ...
...
As a triangle, this begins:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 205, 65, 1;
1, 211, 1795, 1795, 211, 1;
1, 665, 14221, 36317, 14221, 665, 1;
1, 2059, 106819, 636331, 636331, 106819, 2059, 1;
...
Essentially same table as triangle
A227322 (where the antidiagonals only go halfway).
-
A183109[n_, m_] := Sum[(-1)^j*Binomial[m, j]*(2^(m-j) - 1)^n, {j, 0, m}];
T[m_, n_] := A183109[m, n] - Sum[T[i, j]*A183109[m - i, n - j] Binomial[m - 1, i - 1]*Binomial[n, j], {i, 1, m - 1}, {j, 1, n - 1}];
Table[T[m - n + 1, n], {m, 1, 9}, {n, 1, m}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
-
G(N)={my(S=matrix(N,N), T=matrix(N,N));
for(m=1,N,for(n=1,N,
S[m,n]=sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n);
T[m,n]=S[m,n]-sum(i=1, m-1, sum(j=1, n-1, T[i,j]*S[m-i,n-j]*binomial(m-1,i-1)*binomial(n,j)));
));T}
G(7) \\ Andrew Howroyd, May 22 2017
Revised by
N. J. A. Sloane, May 26 2017, to incorporate material from
Andrew Howroyd's May 22 2017 submission (formerly
A287297), which was essentially identical to this, although giving an alternative description and more information.
Showing 1-2 of 2 results.
Comments