cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ross La Haye

Ross La Haye's wiki page.

Ross La Haye has authored 45 sequences. Here are the ten most recent ones:

A268080 Difference between total number of Boolean functions of n variables and total number of monotonic Boolean functions of n variables.

Original entry on oeis.org

0, 1, 10, 236, 65368, 4294959715, 18446744073701723262, 340282366920938463463374605017086170458, 115792089237316195423570985008687907853269984665640563983327146779225571732148
Offset: 0

Author

Ross La Haye, Jan 25 2016

Keywords

Crossrefs

Formula

a(n) = 2^(2^n) - (n-th Dedekind number).
a(n) = A001146(n) - A000372(n).

A266696 a(n) = Sum_{k=3..n} k*StirlingS2(n+1, k+1).

Original entry on oeis.org

3, 34, 260, 1721, 10808, 67376, 427449, 2798432, 19042144, 135083103, 999573770, 7709458472, 61890269371, 516304085366, 4468459583648, 40058286666913, 371420337948828, 3556972620397996, 35138563919933649, 357654826207771292, 3746672499505598556, 40354065576745998303
Offset: 3

Author

Ross La Haye, Jan 02 2016

Keywords

Comments

Let F be a family of nonempty sets on an n-element set A with |F| > 1 such that every pair of distinct elements of F have the same nonempty intersection and there are no two distinct elements of F such that one is a subset of the other. Then a(n) = the total number of such families.
Proof: Let binomial(n,k) denote the binomial coefficient (the number of ways to choose k elements from an n-element set) and StirlingS2(n,k) the Stirling numbers of the second kind (the number of ways to partition an n-element set A into k nonempty parts, the union of which is A). As is well known, StirlingS2(n+1,k+1) = StirlingS2(n,k) + k*StirlingS2(n,k+1), where we assume StirlingS2(0,0) = 1, StirlingS2(n,0) = StirlingS2(0,n) = 0, and StirlingS2(n,k) = 0 when n < k, for n > 0.
Enumerate the elements of F in the following manner. Begin by partitioning the elements of A into either 1) k or 2) k+1 parts. For case 1, there are StirlingS2(n,k) possible partitions. From such a partition, select k-1 of the k parts to assign to the elements of F (where k >= 3). The remaining part constitutes the nonempty intersection. So this enumeration can be accomplished in binomial(k,k-1)*binomial(1,1)*StirlingS2(n,k) = k*StirlingS2(n,k) ways. Here we have that the size of the union of the elements of F equals |A|.
For case 2, there are StirlingS2(n,k+1) partitions. From such a partition, select k-1 of the k+1 parts to assign to the elements of F (where, again, k >= 3). Then select 1 of the 2 remaining parts to constitute the nonempty intersection. So this enumeration can be accomplished in binomial(k+1,k-1)*binomial(2,1)*StirlingS2(n,k+1) = k*(k+1)*StirlingS2(n,k+1) ways. Here we have that the size of the union of the elements of F is less than |A|. So the 2 cases cover both possibilities, i.e., the union of the elements of F is either equal to |A| or less than |A|.
Multiplying the above recurrence by k, we have k*StirlingS2(n+1,k+1) = k*StirlingS2(n,k) + k*(k+1)*StirlingS2(n,k+1), and the claim follows by summing over this for 3 <= k <= n. (Observe that n >= 3 as for n = 1, say [n] = {1}, there is only 1 subset of [n], and for n = 2, say [n] = {1,2}, the subsets of n are {},{1},{2},{1,2}, so that there are no pairs here that have a nonempty intersection and for which neither is a subset of the other. By similar reasoning, k >= 3, as we need at least 2 distinct sets in F, and we need at least 1 element of A not in either of these sets to add to them to create their common nonempty intersection.)
The families F counted here are very close in definition to sunflowers = delta-systems.
The families F counted here could be described perhaps more clearly as intersecting Sperner families such that every pair of distinct elements of F have the same nonempty intersection and |F| > 1.

Examples

			Let [n] = {1,2,3}. Then F = {{1,3},{2,3}} or {{1,2},{2,3}} or {{1,2},{1,3}}.
		

References

  • Miklos Bona, Introduction to Enumerative Combinatorics, McGraw-Hill, 2007, pages 363-364.
  • Peter Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994, pages 100-102.

Crossrefs

Programs

  • Maple
    seq(add(k*Stirling2(n+1,k+1),k=3..n), n=3..40); # Robert Israel, Jan 03 2016
  • Mathematica
    Table[Sum[k*StirlingS2[n+1,k+1],{k,3,n}],{n,3,14}]
  • PARI
    a(n) = sum(k=3, n, k*stirling(n+1, k+1, 2)); \\ Michel Marcus, Jan 03 2016
    
  • Perl
    use ntheory ":all"; sub a266696 { my $n=shift; vecsum(map { vecprod($,stirling($n+1,$+1,2)) } 3..$n); } # Dana Jacobsen, Jan 03 2016

Formula

a(n) = Sum_{k=3..n} k * StirlingS2(n+1, k+1).
a(n) = B(n+2) - 2*B(n+1) - 3^n + 2^n, where B(n) is the n-th Bell number. - Ross La Haye, Feb 16 2017
E.g.f.: exp(x-1)*(exp(x) - 1)*(exp(exp(x)) - exp(x+1)). - Stefano Spezia, Jul 06 2021

Extensions

More terms from Michel Marcus, Jan 03 2016

A217764 Array defined by a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n, read by antidiagonals.

Original entry on oeis.org

1, 3, 0, 9, 1, 1, 27, 5, 4, 0, 81, 19, 14, 2, 1, 243, 65, 46, 10, 5, 0, 729, 211, 146, 38, 19, 3, 1, 2187, 665, 454, 130, 65, 15, 6, 0, 6561, 2059, 1394, 422, 211, 57, 24, 4, 1, 19683, 6305, 4246, 1330, 665, 195, 84, 20, 7, 0, 59049, 19171, 12866, 4118, 2059, 633, 276, 76, 29, 5, 1
Offset: 0

Author

Ross La Haye, Mar 23 2013

Keywords

Comments

Columns 0,1,2,3 respectively correspond to relations R_3, R_4, R_0, R_1 defined in La Haye paper listed below.

Examples

			a(4,4) = 211 because floor((4+2)/2)*3^4 - floor((4+1)/2)*2^4 = 3*3^4 - 2*2^4 = 243 - 32 = 211.
		

Crossrefs

Cf. a(1,k) = A084964(k+2); a(n,0) = A000244(n); a(n,1) = A001047(n); a(n,2) = A027649(n); a(n,3) = A056182(n); a(n,4) = A001047(n+1); a(n,5) = A210448(n); a(n,6) = A166060(n); a(n,7) = A145563(n); a(n,8) = A102485(n).

Formula

a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n. a(n,k) = 5*a(n-1,k) - 6*a(n-2,k); a(0,k) = floor((k+2)/2) - floor((k+1)/2), a(1,k) = floor((k+2)/2)*3 - floor((k+1)/2)*2.

A178784 Let d be the vector of divisors of 100 sorted from largest to smallest, i.e., [100,50,25,20,10,5,4,2,1]. Then a(n) = 100/d(n) - 1.

Original entry on oeis.org

0, 1, 3, 4, 9, 19, 24, 49, 99
Offset: 1

Author

Ross La Haye, Jun 13 2010

Keywords

Crossrefs

Cf. A018283.

Programs

  • Mathematica
    Map[(100/# - 1)&, Sort[Divisors[100], Greater]]
    Map[(#-1)&,Divisors[100]]  (* Ross La Haye, Jun 17 2010 *)
    100/Reverse[Divisors[100]]-1 (* Harvey P. Dale, Jan 14 2015 *)

Formula

a(n) = 100/A018283(10-n) - 1.
a(n) = A018283(n) - 1. - Ross La Haye, Jun 17 2010

A171233 Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.

Original entry on oeis.org

2, 4, 1, 6, 2, 1, 8, 1, 1, 1, 10, 4, 2, 1, 1, 12, 1, 1, 1, 1, 1, 14, 6, 1, 2, 1, 1, 1, 16, 1, 4, 1, 1, 1, 1, 1, 18, 8, 1, 1, 2, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 22, 10, 6, 4, 1, 2, 1, 1, 1, 1, 1, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 28, 1, 8, 1, 4, 1, 1, 1
Offset: 1

Author

Ross La Haye, Dec 05 2009

Keywords

Comments

T(n,3): continued fraction expansion of e - 1.

Examples

			Array begins
2 1 1 1 ...
4 2 1 1 ...
6 1 2 1 ...
8 4 1 2 ...
...........
		

Crossrefs

Cf. T(n,1) = A005843(n-1), A171232, A077049.

Programs

  • Maple
    A171233 := proc(n,k) if n mod k <> 0 then 1; else 2*n/k ; end if; end proc: seq(seq(A171233(d-k+1,k),k=1..d),d=1..17) ; # R. J. Mathar, Dec 08 2009

Formula

T(n,k) = A171232(n,k) + A077049(n,k).

Extensions

Terms beyond the 6th antidiagonal from R. J. Mathar, Dec 08 2009

A171232 Array read by antidiagonals, T(n,k) = 2*(n/k) - 1, if n mod k = 0; otherwise, T(n,k) = 1.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 7, 1, 1, 1, 9, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 13, 5, 1, 1, 1, 1, 1, 15, 1, 3, 1, 1, 1, 1, 1, 17, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 9, 5, 3, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 11, 1, 1, 1, 1
Offset: 1

Author

Ross La Haye, Dec 05 2009

Keywords

Comments

T(n,1): continued fraction expansion of coth(1).
T(n,2): continued fraction expansion of tan(1) = cot(pi/2 - 1).

Examples

			Array begins
1 1 1 1 1 ...
3 1 1 1 1 ...
5 1 1 1 1 ...
7 3 1 1 1 ...
9 1 1 1 1 ...
.............
		

Crossrefs

Cf. T(n, 1) = A005408(n-1), T(n, 2) = A093178(n-1), A171233, A077049.

Programs

  • Mathematica
    T[n_,k_] := If[Divisible[n, k], 2*(n/k) - 1, 1]; Table[T[n-k+1, k], {n, 1, 10}, {k,1, n}] //Flatten (* Amiram Eldar, Jun 29 2020 *)

Formula

T(n,k) = A171233(n,k) - A077049(n,k).

Extensions

More terms from Amiram Eldar, Jun 29 2020

A143915 Denominators of continued fraction convergents to e^(W(e-1)/(e-1)) where W(z) denotes the Lambert W function and e = 2.718281828...

Original entry on oeis.org

1, 1, 2, 5, 7, 19, 102, 529, 631, 350103, 1050940, 4553863, 5604803, 133464332, 272533467, 2586265535, 5445064537, 8031330072, 2455000736497, 2463032066569, 4918032803066, 7381064869635, 27061227411971, 142687201929490
Offset: 0

Author

Ross La Haye, Sep 05 2008

Keywords

Crossrefs

Cf. A143914 (numerators), A141606 (decimal expansion), A143913 (continued fraction).

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[E^((ProductLog[E - 1])/(E - 1)), n]]], {n, 1, 25}]

A143914 Numerators of continued fraction convergents to e^(W(e-1)/(e-1)) where W(z) denotes the Lambert W function and e = 2.718281828...

Original entry on oeis.org

1, 2, 3, 8, 11, 30, 161, 835, 996, 552619, 1658853, 7188031, 8846884, 210666363, 430179610, 4082282853, 8594745316, 12677028169, 3875088336861, 3887765365030, 7762853701891, 11650619066921, 42714710902654
Offset: 0

Author

Ross La Haye, Sep 05 2008

Keywords

Crossrefs

Cf. A141606 for decimal expansion, A143913 for continued fraction expansion.

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[E^((ProductLog[E - 1])/(E - 1)), n]]], {n, 1, 25}]

A143913 Continued fraction expansion of e^(W(e-1)/(e-1)) where W(z) denotes the Lambert W function and e = 2.718281828...

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 5, 1, 554, 3, 4, 1, 23, 2, 9, 2, 1, 305, 1, 1, 1, 3, 5, 5, 1, 3, 10, 5, 3, 1, 2, 1, 2, 1, 1, 2, 1, 4, 2, 1, 3, 2, 9, 1, 4, 11, 1, 3, 1, 3, 3, 1, 11, 4, 4, 1, 1, 2, 2, 3, 3, 4, 1, 3, 6, 3, 1, 2, 1, 3, 3, 3, 9, 1, 2, 11, 7, 1, 4, 1, 8, 10, 23, 2, 4, 1, 2, 10, 5, 2, 5, 1, 3, 36, 1, 6, 1, 6
Offset: 0

Author

Ross La Haye, Sep 04 2008

Keywords

Crossrefs

Cf. A141606 for decimal expansion.

Programs

  • Mathematica
    ContinuedFraction[E^((ProductLog[E - 1])/(E - 1)), 111]
  • PARI
    contfrac(exp((lambertw(exp(1) -1)/(exp(1) -1)))) \\ G. C. Greubel, Mar 02 2018

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024

A143934 Continued fraction expansion of exp(LambertW(1/e)+1).

Original entry on oeis.org

3, 1, 1, 2, 4, 9, 1, 1, 292, 20, 1, 1, 2, 1, 8, 1, 13, 2, 2, 1, 3, 2, 16, 11, 5, 1, 1, 1, 1, 1, 3, 8, 1, 5, 5, 1, 7, 1, 41, 2, 1, 1, 2, 1, 13, 1, 6, 3, 33, 1, 245, 2, 1, 22, 1, 2, 5, 1, 1, 1, 10, 1, 1, 2, 1, 4, 1, 2, 1, 19, 17, 1, 3, 2, 1, 15, 2, 2, 2, 1, 1, 1, 4, 17, 9, 3, 2, 1, 1, 1, 21, 1, 2, 1, 1, 5, 1
Offset: 0

Author

Ross La Haye, Sep 05 2008

Keywords

Crossrefs

Cf. A141251 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[E^(ProductLog[1/E] + 1), 111]
  • PARI
    contfrac(exp(lambertw(1/exp(1))+1)) \\ Michel Marcus, Nov 13 2017

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024