cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002501 a(n) = 7^n - 3*4^n + 2*3^n.

Original entry on oeis.org

1, 19, 205, 1795, 14221, 106819, 778765, 5581315, 39606541, 279447619, 1965098125, 13792018435, 96690872461, 677427332419, 4744368982285, 33220131761155, 232579232659981, 1628208214321219, 11398072876175245, 79788974736297475, 558532690864457101
Offset: 1

Views

Author

Keywords

Comments

Counts connected relations. On page 578 Kreweras (1969) says: "Le théorème s'applique notamment au dénombrement des relations binaires externes qui possèdent la propriété de connexité; cela revient à calculer le nombre a(m,n) de manières de remplir un tableau de m lignes et n colonnes avec des 0 et des 1, en respectant les deux conditions suivantes: (1): aucune rangée (ligne ni colonne) ne doit être tout entière remplie de zéros; (2): deux cases quelconques marquées 1 peuvent être jointes par une chaîne de cases marquées 1 telle que deux cases consécutives de la chaîne appartiennent à une même rangée."

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A262307.

Programs

Formula

G.f.: -x*(1+5*x) / ( (3*x-1)*(7*x-1)*(4*x-1) ). - R. J. Mathar, Jun 09 2013
a(n) = 14*a(n-1) - 61*a(n-2) + 84*a(n-3). - Wesley Ivan Hurt, Apr 11 2022

Extensions

Better definition and more terms from Goran Kilibarda, Vladeta Jovovic, Apr 14 2004

A002502 Number of connected relations.

Original entry on oeis.org

1, 65, 1795, 36317, 636331, 10365005, 162470155, 2495037197, 37898120011, 572284920845, 8614868501515, 129467758660877, 1943971108806091, 29175170378428685, 437752102106036875, 6567275797761209357
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A262307.

Programs

  • Mathematica
    LinearRecurrence[{38,-539,3622,-11640,14400},{1,65,1795,36317,636331},20] (* Harvey P. Dale, Mar 24 2017 *)

Formula

15^n-4*8^n-3*6^n+12*5^n-6*4^n. - Goran Kilibarda, Vladeta Jovovic, Apr 14 2004
G.f. x*( -1-27*x+136*x^2+480*x^3 ) / ( (6*x-1)*(5*x-1)*(15*x-1)*(4*x-1)*(8*x-1) ).
- R. J. Mathar, Jun 09 2013

Extensions

More terms from Goran Kilibarda, Vladeta Jovovic, Apr 14 2004

A093732 Number of connected relations.

Original entry on oeis.org

1, 211, 14221, 636331, 23679901, 805351531, 26175881341, 831358677451, 26094426008221, 814105545191851, 25320182311228861, 786251347986776971, 24394981288950302941, 756583120577782494571, 23459491617092461686781, 727330825918603925122891
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 14 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[31^n - 5*16^n - 10*10^n + 20*9^n + 30*7^n - 60*6^n + 24*5^n, {n, 25}] (* T. D. Noe, May 29 2012 *)
  • PARI
    a(n)=31^n-5*16^n-10*10^n+20*9^n+30*7^n-60*6^n+24*5^n \\ Charles R Greathouse IV, Jun 16 2015

Formula

a(n) = 31^n - 5*16^n - 10*10^n + 20*9^n + 30*7^n - 60*6^n + 24*5^n.
G.f.: -x*(1+127*x-729*x^2-20467*x^3+107048*x^4+259620*x^5) / ( (9*x-1)*(6*x-1)*(7*x-1)*(5*x-1)*(31*x-1)*(10*x-1)*(16*x-1) ). - R. J. Mathar, Jun 09 2013

A114936 Number of connected (4,n)-hypergraphs (without empty edges).

Original entry on oeis.org

0, 1, 10, 135, 1992, 30166, 458885, 6965225, 105358102, 1588998756, 23915093535, 359444209015, 5397938190512, 81022969645346, 1215801458118985, 18240857019892005, 273644796626023722, 4104936328561231936
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/4!)*(Exp[15*x] - 4*Exp[8*x] + 6*Exp[7*x] - 3*Exp[6*x] + 12*Exp[5*x] - 24*Exp[4*x] + 23*Exp[3*x] - 11*Exp[2*x] + 6*Exp[x] - 6), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/4!)*(exp(15*x) - 4*exp(8*x) + 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) - 24*exp(4*x) + 23*exp(3*x) - 11*exp(2*x) + 6*exp(x) - 6)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/4!)*(exp(15*x) - 4*exp(8*x) + 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) - 24*exp(4*x) + 23*exp(3*x) - 11*exp(2*x) + 6*exp(x) - 6).

A114935 Number of connected (3,n)-hypergraphs (without empty edges).

Original entry on oeis.org

0, 1, 6, 44, 332, 2476, 18136, 130824, 933372, 6610676, 46603616, 327603904, 2298933412, 16115938476, 112906938696, 790735321784, 5536710117452, 38763269947876, 271368229299376, 1899679393564464, 13298164198917492
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] + 5*Exp[3*x] - 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/3!)*(exp(7*x) -3*exp(4*x) +5*exp(3*x) -3*exp(2*x) +2*exp(x) - 2)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/3!)*(exp(7*x) -3*exp(4*x) +5*exp(3*x) -3*exp(2*x) +2*exp(x) - 2).

A114937 Number of connected (5,n)-hypergraphs (without empty edges).

Original entry on oeis.org

0, 1, 15, 336, 8880, 254596, 7606446, 231899522, 7137539256, 220623286632, 6831984816402, 211719998195278, 6562887569336652, 203453536535818388, 6307290799931347878, 195532244201392935354, 6061637498660735815968
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Formula

E.g.f.: (1/5!)*(exp(31*x) - 5*exp(16*x) + 10*exp(15*x) - 10*exp(10*x) + 20*exp(9*x) - 40*exp(8*x) + 65*exp(7*x) - 90*exp(6*x) + 144*exp(5*x) - 165*exp(4*x) + 120*exp(3*x) - 50*exp(2*x) + 24*exp(x) - 24).

A226658 T(n,k)=Number of nXk 0..4 arrays of sums of 2X2 subblocks of some (n+1)X(k+1) binary array.

Original entry on oeis.org

5, 19, 19, 65, 205, 65, 211, 1795, 1795, 211, 665, 14221, 36317, 14221, 665, 2059, 106819, 636331, 636331, 106819, 2059, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 19171, 5581315, 162470155, 805351531, 805351531, 162470155
Offset: 1

Views

Author

R. H. Hardin Jun 14 2013

Keywords

Comments

Table starts
......5.........19...........65............211.............665............2059
.....19........205.........1795..........14221..........106819..........778765
.....65.......1795........36317.........636331........10365005.......162470155
....211......14221.......636331.......23679901.......805351531.....26175881341
....665.....106819.....10365005......805351531.....56294206205...3735873535339
...2059.....778765....162470155....26175881341...3735873535339.502757743028605
...6305....5581315...2495037197...831358677451.241600284318365
..19171...39606541..37898120011.26094426008221
..58025..279447619.572284920845
.175099.1965098125
.527345

Examples

			Some solutions for n=3 k=4
..1..1..1..0....0..1..1..1....0..1..1..0....1..0..1..1....1..0..2..3
..3..1..1..2....1..1..2..1....1..2..2..2....1..2..3..2....1..2..2..1
..3..2..2..3....3..1..2..3....2..1..2..3....2..3..2..1....3..3..1..0
		

Crossrefs

Diagonal is A005333(n+1)
Staircase diagonal is A123281(n-3)
Column 1 is A001047(n+1)
Column 2 is A002501(n+1)
Column 3 is A002502(n+1)
Column 4 is A093732(n+1)
Column 5 is A093733(n+1)

A114932 Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges).

Original entry on oeis.org

0, 0, 1, 25, 267, 2265, 17471, 128765, 927067, 6591505, 46545591, 327428805, 2298406067, 16114352345, 112902172111, 790721005645, 5536667136267, 38763140938785, 271367842141031, 1899678231827285, 13298160713181667
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2).

A092794 Number of connected relations.

Original entry on oeis.org

1, 21, 265, 2733, 25441, 223461, 1895545, 15736413, 128882641, 1046542101, 8451838825, 68020609293, 546227922241, 4380272835141, 35094966838105, 281025802973373, 2249545355064241, 18003091856638581, 144058517372685385, 1152637601335180653
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(4*x + 1)/((4*x - 1)*(5*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 05 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(4*x+1)/((1-4*x)*(1-5*x)*(1-8*x))) \\ G. C. Greubel, Oct 05 2017

Formula

a(n) = 8^n - 3*5^n + 2*4^n.
From Colin Barker, Jul 13 2013: (Start)
a(n) = 17*a(n-1) - 92*a(n-2) + 160*a(n-3).
G.f.: x*(4*x+1) / ((1-4*x)*(1-5*x)*(1-8*x)). (End)

Extensions

Additional term from Colin Barker, Jul 13 2013

A092795 Number of connected relations.

Original entry on oeis.org

1, 67, 1993, 43891, 836521, 14764627, 249723433, 4123297651, 67157947561, 1085384064787, 17464790421673, 280328391247411, 4493290901135401, 71964955947764947, 1152089156508284713, 18439265231953981171, 295080697103288816041, 4721762414918959913107
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{43,-701,5477,-20658,30240},{1,67,1993,43891,836521},20] (* Harvey P. Dale, May 24 2025 *)
  • PARI
    for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n.
G.f.: x*(318*x^3+187*x^2-24*x-1) / ((5*x-1)*(6*x-1)*(7*x-1)*(9*x-1)*(16*x-1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013
Showing 1-10 of 12 results. Next