A002501
a(n) = 7^n - 3*4^n + 2*3^n.
Original entry on oeis.org
1, 19, 205, 1795, 14221, 106819, 778765, 5581315, 39606541, 279447619, 1965098125, 13792018435, 96690872461, 677427332419, 4744368982285, 33220131761155, 232579232659981, 1628208214321219, 11398072876175245, 79788974736297475, 558532690864457101
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Better definition and more terms from Goran Kilibarda,
Vladeta Jovovic, Apr 14 2004
A002502
Number of connected relations.
Original entry on oeis.org
1, 65, 1795, 36317, 636331, 10365005, 162470155, 2495037197, 37898120011, 572284920845, 8614868501515, 129467758660877, 1943971108806091, 29175170378428685, 437752102106036875, 6567275797761209357
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
LinearRecurrence[{38,-539,3622,-11640,14400},{1,65,1795,36317,636331},20] (* Harvey P. Dale, Mar 24 2017 *)
A093732
Number of connected relations.
Original entry on oeis.org
1, 211, 14221, 636331, 23679901, 805351531, 26175881341, 831358677451, 26094426008221, 814105545191851, 25320182311228861, 786251347986776971, 24394981288950302941, 756583120577782494571, 23459491617092461686781, 727330825918603925122891
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..200
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- G. Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B 268 1969 A577-A579.
- Index entries for linear recurrences with constant coefficients, signature (84,-2774,47548,-462525,2575088,-7643820,9374400).
-
Table[31^n - 5*16^n - 10*10^n + 20*9^n + 30*7^n - 60*6^n + 24*5^n, {n, 25}] (* T. D. Noe, May 29 2012 *)
-
a(n)=31^n-5*16^n-10*10^n+20*9^n+30*7^n-60*6^n+24*5^n \\ Charles R Greathouse IV, Jun 16 2015
A114936
Number of connected (4,n)-hypergraphs (without empty edges).
Original entry on oeis.org
0, 1, 10, 135, 1992, 30166, 458885, 6965225, 105358102, 1588998756, 23915093535, 359444209015, 5397938190512, 81022969645346, 1215801458118985, 18240857019892005, 273644796626023722, 4104936328561231936
Offset: 0
-
With[{nmax = 50}, CoefficientList[Series[(1/4!)*(Exp[15*x] - 4*Exp[8*x] + 6*Exp[7*x] - 3*Exp[6*x] + 12*Exp[5*x] - 24*Exp[4*x] + 23*Exp[3*x] - 11*Exp[2*x] + 6*Exp[x] - 6), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace((1/4!)*(exp(15*x) - 4*exp(8*x) + 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) - 24*exp(4*x) + 23*exp(3*x) - 11*exp(2*x) + 6*exp(x) - 6)))) \\ G. C. Greubel, Oct 07 2017
A114935
Number of connected (3,n)-hypergraphs (without empty edges).
Original entry on oeis.org
0, 1, 6, 44, 332, 2476, 18136, 130824, 933372, 6610676, 46603616, 327603904, 2298933412, 16115938476, 112906938696, 790735321784, 5536710117452, 38763269947876, 271368229299376, 1899679393564464, 13298164198917492
Offset: 0
-
With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] + 5*Exp[3*x] - 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
-
x='x+O('x^50); concat([0], Vec(serlaplace((1/3!)*(exp(7*x) -3*exp(4*x) +5*exp(3*x) -3*exp(2*x) +2*exp(x) - 2)))) \\ G. C. Greubel, Oct 07 2017
A114937
Number of connected (5,n)-hypergraphs (without empty edges).
Original entry on oeis.org
0, 1, 15, 336, 8880, 254596, 7606446, 231899522, 7137539256, 220623286632, 6831984816402, 211719998195278, 6562887569336652, 203453536535818388, 6307290799931347878, 195532244201392935354, 6061637498660735815968
Offset: 0
A226658
T(n,k)=Number of nXk 0..4 arrays of sums of 2X2 subblocks of some (n+1)X(k+1) binary array.
Original entry on oeis.org
5, 19, 19, 65, 205, 65, 211, 1795, 1795, 211, 665, 14221, 36317, 14221, 665, 2059, 106819, 636331, 636331, 106819, 2059, 6305, 778765, 10365005, 23679901, 10365005, 778765, 6305, 19171, 5581315, 162470155, 805351531, 805351531, 162470155
Offset: 1
Some solutions for n=3 k=4
..1..1..1..0....0..1..1..1....0..1..1..0....1..0..1..1....1..0..2..3
..3..1..1..2....1..1..2..1....1..2..2..2....1..2..3..2....1..2..2..1
..3..2..2..3....3..1..2..3....2..1..2..3....2..3..2..1....3..3..1..0
A114932
Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges).
Original entry on oeis.org
0, 0, 1, 25, 267, 2265, 17471, 128765, 927067, 6591505, 46545591, 327428805, 2298406067, 16114352345, 112902172111, 790721005645, 5536667136267, 38763140938785, 271367842141031, 1899678231827285, 13298160713181667
Offset: 0
-
With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
-
x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ G. C. Greubel, Oct 07 2017
A092794
Number of connected relations.
Original entry on oeis.org
1, 21, 265, 2733, 25441, 223461, 1895545, 15736413, 128882641, 1046542101, 8451838825, 68020609293, 546227922241, 4380272835141, 35094966838105, 281025802973373, 2249545355064241, 18003091856638581, 144058517372685385, 1152637601335180653
Offset: 1
-
CoefficientList[Series[-x*(4*x + 1)/((4*x - 1)*(5*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 05 2017 *)
-
x='x+O('x^50); Vec(x*(4*x+1)/((1-4*x)*(1-5*x)*(1-8*x))) \\ G. C. Greubel, Oct 05 2017
A092795
Number of connected relations.
Original entry on oeis.org
1, 67, 1993, 43891, 836521, 14764627, 249723433, 4123297651, 67157947561, 1085384064787, 17464790421673, 280328391247411, 4493290901135401, 71964955947764947, 1152089156508284713, 18439265231953981171, 295080697103288816041, 4721762414918959913107
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..825
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (43,-701,5477,-20658,30240).
-
[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // G. C. Greubel, Oct 08 2017
-
Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
LinearRecurrence[{43,-701,5477,-20658,30240},{1,67,1993,43891,836521},20] (* Harvey P. Dale, May 24 2025 *)
-
for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ G. C. Greubel, Oct 08 2017
Showing 1-10 of 12 results.
Comments