cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A114936 Number of connected (4,n)-hypergraphs (without empty edges).

Original entry on oeis.org

0, 1, 10, 135, 1992, 30166, 458885, 6965225, 105358102, 1588998756, 23915093535, 359444209015, 5397938190512, 81022969645346, 1215801458118985, 18240857019892005, 273644796626023722, 4104936328561231936
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/4!)*(Exp[15*x] - 4*Exp[8*x] + 6*Exp[7*x] - 3*Exp[6*x] + 12*Exp[5*x] - 24*Exp[4*x] + 23*Exp[3*x] - 11*Exp[2*x] + 6*Exp[x] - 6), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/4!)*(exp(15*x) - 4*exp(8*x) + 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) - 24*exp(4*x) + 23*exp(3*x) - 11*exp(2*x) + 6*exp(x) - 6)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/4!)*(exp(15*x) - 4*exp(8*x) + 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) - 24*exp(4*x) + 23*exp(3*x) - 11*exp(2*x) + 6*exp(x) - 6).

A114935 Number of connected (3,n)-hypergraphs (without empty edges).

Original entry on oeis.org

0, 1, 6, 44, 332, 2476, 18136, 130824, 933372, 6610676, 46603616, 327603904, 2298933412, 16115938476, 112906938696, 790735321784, 5536710117452, 38763269947876, 271368229299376, 1899679393564464, 13298164198917492
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] + 5*Exp[3*x] - 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((1/3!)*(exp(7*x) -3*exp(4*x) +5*exp(3*x) -3*exp(2*x) +2*exp(x) - 2)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/3!)*(exp(7*x) -3*exp(4*x) +5*exp(3*x) -3*exp(2*x) +2*exp(x) - 2).

A114934 Number of connected (5,n)-hypergraphs (without empty edges and without multiple edges).

Original entry on oeis.org

0, 0, 0, 21, 2773, 148365, 5878391, 204819447, 6721694469, 214306917321, 6736603947907, 210284186632443, 6541309609120385, 203129541349695597, 6302428271530970943, 195459285517696665759, 6060542952694406463421
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/5!)*(Exp[31*x] - 5*Exp[16*x] - 10*Exp[15*x] - 10*Exp[10*x] + 20*Exp[9*x] + 40*Exp[8*x] + 65*Exp[7*x] - 30*Exp[6*x] - 96*Exp[5*x] - 45*Exp[4*x] + 20*Exp[3*x] + 50*Exp[2*x] + 24*Exp[x] - 24), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(serlaplace((1/5!)*(exp(31*x) - 5*exp(16*x) - 10*exp(15*x) - 10*exp(10*x) + 20*exp(9*x) + 40*exp(8*x) + 65*exp(7*x) - 30*exp(6*x) - 96*exp(5*x) - 45*exp(4*x) + 20*exp(3*x) + 50*exp(2*x) + 24*exp(x) - 24)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/5!)*(exp(31*x) - 5*exp(16*x) - 10*exp(15*x) - 10*exp(10*x) + 20*exp(9*x) + 40*exp(8*x) + 65*exp(7*x) - 30*exp(6*x) - 96*exp(5*x) - 45*exp(4*x) + 20*exp(3*x) + 50*exp(2*x) + 24*exp(x) - 24).

A114933 Number of connected (4,n)-hypergraphs (without empty edges and without multiple edges).

Original entry on oeis.org

0, 0, 0, 32, 1094, 23055, 405475, 6575842, 102567444, 1569195485, 23775369725, 358461659952, 5391042181294, 80974624209115, 1215462744452775, 18238484835400862, 273628186560143144, 4104820038944901945
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/4!)*(Exp[15*x] - 4*Exp[8*x] - 6*Exp[7*x] - 3*Exp[6*x] + 12*Exp[5*x] + 12*Exp[4*x] - Exp[3*x] - 11*Exp[2*x] - 6*Exp[x] + 6), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(serlaplace((1/4!)*(exp(15*x)-4*exp(8*x)-6*exp(7*x)-3*exp(6*x)+12*exp(5*x)+12*exp(4*x)-exp(3*x)-11*exp(2*x)-6*exp(x)+6)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/4!)*(exp(15*x) - 4*exp(8*x) - 6*exp(7*x) - 3*exp(6*x) + 12*exp(5*x) + 12*exp(4*x) - exp(3*x) - 11*exp(2*x) - 6*exp(x) + 6).

A114932 Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges).

Original entry on oeis.org

0, 0, 1, 25, 267, 2265, 17471, 128765, 927067, 6591505, 46545591, 327428805, 2298406067, 16114352345, 112902172111, 790721005645, 5536667136267, 38763140938785, 271367842141031, 1899678231827285, 13298160713181667
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2).
Showing 1-5 of 5 results.