cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A047863 Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Original entry on oeis.org

1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0

Views

Author

Keywords

Comments

Row sums of A111636. - Peter Bala, Sep 30 2012
Column 2 of Table 2 in Read. - Peter Bala, Apr 11 2013
It appears that 5 does not divide a(n), that a(n) is even for n>0, that 3 divides a(2n) for n>0, that 7 divides a(6n+5), and that 13 divides a(12n+3). - Ralf Stephan, May 18 2013

Examples

			For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
		

References

  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.

Crossrefs

Column k=2 of A322280.
Cf. A135079 (variant).

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
    nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
    
  • PARI
    N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
    Vec(serlaplace(egf))  \\ Joerg Arndt, May 04 2013
    
  • Python
    from sympy import binomial
    def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(k*(n-k)).
a(n) = 4 * A000683(n) + 2. - Vladeta Jovovic, Feb 02 2000
E.g.f.: Sum_{n>=0} exp(2^n*x)*x^n/n!. - Paul D. Hanna, Nov 27 2007
O.g.f.: Sum_{n>=0} x^n/(1 - 2^n*x)^(n+1). - Paul D. Hanna, Mar 08 2008
From Peter Bala, Apr 11 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function is E(x)^2 = 1 + 2*x + 6*x^2/(2!*2) + 26*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Stanley). For other examples see A191371 (k = 3) and A223887 (k = 4).
If A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + ... denotes the e.g.f. for this sequence then sqrt(A(x)) = 1 + x + 2*x^2/2! + 7*x^3/3! + ... is the e.g.f. for A047864, which counts labeled 2-colorable graphs. (End)
a(n) ~ c * 2^(n^2/4+n+1/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = EllipticTheta[3, 0, 1/2] = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

Better description from Christian G. Bower, Dec 15 1999

A033995 Number of bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479, 32303, 251135, 2527712, 33985853, 611846940, 14864650924, 488222721992, 21712049275198, 1308300679611469, 106897965189674291, 11852113048215107822, 1784730721403509209215, 365323537513403184463273
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

All bipartite graphs are perfect. - Falk Hüffner, Nov 27 2015
EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

Examples

			For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - _Michael Somos_, May 13 2019
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A297877.
The labeled version is A047864.
Equals A076278(n) + 1.
Cf. A005142 (connected).

Programs

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A001832 Number of labeled connected bipartite graphs on n nodes.

Original entry on oeis.org

1, 1, 3, 19, 195, 3031, 67263, 2086099, 89224635, 5254054111, 426609529863, 47982981969979, 7507894696005795, 1641072554263066471, 502596525992239961103, 216218525837808950623459, 130887167385831881114006475, 111653218763166828863141636911
Offset: 1

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A228861.
The unlabeled version is A005142.

Programs

  • Mathematica
    mx = 17; s = Sum[ Binomial[n, k] 2^(k (n - k)) x^n/n!, {n, 0, mx}, {k, 0, n}] ; Range[0, mx]! CoefficientList[ Series[ Log[s]/2, {x, 0, mx}], x] (* Geoffrey Critzer, May 10 2011 *)
  • PARI
    seq(n)=Vec(serlaplace(log(sum(k=0, n, exp(2^k*x + O(x*x^n))*x^k/k!))/2)) \\ Andrew Howroyd, Sep 26 2018

Formula

E.g.f.: log(A(x))/2 where A(x) is e.g.f. of A047863.
a(n) = A002031(n)/2, for n > 1. - Geoffrey Critzer, May 10 2011

Extensions

More terms from Vladeta Jovovic, Apr 12 2003

A084279 Number of labeled 3-colorable (i.e., chromatic number <= 3) graphs on n nodes.

Original entry on oeis.org

1, 2, 8, 63, 958, 27554, 1457047, 137144754, 22249524024, 6032417530135, 2663111111716110, 1876540387225350958
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Extensions

a(7)-a(12) added using tinygraph by Falk Hüffner, Jun 20 2018

A084280 Number of labeled 4-colorable (i.e., chromatic number <= 4) graphs on n nodes.

Original entry on oeis.org

1, 2, 8, 64, 1023, 32596, 2062592, 257798069, 63135260853, 29939766625614, 27055039857514327
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Extensions

a(7)-a(11) added using tinygraph by Falk Hüffner, Jun 20 2018

A117279 Triangle read by rows: T(n,k) is number of labeled bipartite graphs with n nodes and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 3, 1, 10, 45, 110, 140, 60, 10, 1, 15, 105, 435, 1125, 1701, 1200, 480, 105, 10, 1, 21, 210, 1295, 5355, 14952, 26572, 26670, 17535, 7840, 2331, 420, 35, 1, 28, 378, 3220, 19075, 81228, 246414, 507424, 666015, 620900, 431368
Offset: 0

Views

Author

Vladeta Jovovic, Jun 23 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,  1;
  1,  3,  3;
  1,  6, 15,  16,   3;
  1, 10, 45, 110, 140, 60, 10;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5.

Crossrefs

Row sums give A047864,
Columns k=1..5 are A000217(n-1), A050534, A053526, A053527, A053528.
The unlabeled version is A297877.

Programs

  • Mathematica
    nn=10;f[x_,y_]:=Sum[Sum[Binomial[n,k](1+y)^(k(n-k)),{k,0,n}]x^n/n!,{n,0,nn}];Map[Select[#,#>0&]&,Range[0,nn]!CoefficientList[Series[Exp[Log[f[x,y]]/2],{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Sep 05 2013 *)
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(sqrt(sum(k=0, n, exp(x*(1+y)^k + O(x*x^n))*x^k/k! ))))]}
    { my(A=T(6)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 10 2022

Formula

E.g.f.: sqrt(Sum_{n>=0} exp(x*(1+q)^n)*x^n/n!).

A084281 Number of labeled 5-colorable (i.e., chromatic number <= 5) graphs on n nodes.

Original entry on oeis.org

1, 2, 8, 64, 1024, 32767, 2096731, 268232643, 68572495926, 35005772219631, 35642624717803839
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Extensions

a(7)-a(11) added using tinygraph by Falk Hüffner, Jun 20 2018

A084282 Number of labeled 6-colorable (i.e., chromatic number <= 6) graphs on n nodes.

Original entry on oeis.org

1, 2, 8, 64, 1024, 32768, 2097151, 268434467, 68718375600, 35182553667342, 36023832051695607
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Extensions

a(7) from Charles R Greathouse IV, Apr 09 2012
a(8)-a(11) added using tinygraph by Falk Hüffner, Jun 20 2018

A232699 Number of labeled point-determining bipartite graphs on n vertices.

Original entry on oeis.org

1, 1, 1, 3, 15, 135, 1875, 38745, 1168545, 50017905, 3029330745, 257116925835, 30546104308335, 5065906139629335, 1172940061645387035, 379092680506164049425, 171204492289446788997825, 108139946568584292606269025, 95671942593719946611454522225
Offset: 0

Views

Author

Justin M. Troyka, Nov 27 2013

Keywords

Comments

A graph is point-determining if no two vertices have the same set of neighbors. This kind of graph is also called a mating graph.
a(n) is always odd.
For every prime p > 2, a(n) is divisible by p for all n >= p. It follows that, if m is odd and squarefree with largest prime factor q, then a(n) is divisible by m for all n >= q. A similar property appears to hold for odd prime powers, in which case it would hold for all odd numbers.

Examples

			Consider n = 3. The triangle graph is point-determining, but it is not bipartite, so it is not counted in a(3). The graph 1--2--3 is bipartite, but it is not point-determining (the vertices on the two ends have the same neighborhood), so it is also not counted in a(3). The only graph counted in a(3) is the graph *--*  * (with three possible labelings). - _Justin M. Troyka_, Nov 27 2013
		

Crossrefs

Cf. A006024, A004110 (labeled and unlabeled point-determining graphs).
Cf. A092430, A004108 (labeled and unlabeled connected point-determining graphs).
Cf. A218090 (unlabeled point-determining bipartite graphs).
Cf. A232700, A088974 (labeled and unlabeled connected point-determining bipartite graphs).

Programs

  • Mathematica
    terms = 20;
    CoefficientList[Sqrt[Sum[((1+x)^2^k Log[1+x]^k)/k!, {k, 0, terms}]] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={my(A=log(1+x+O(x*x^n))); Vec(serlaplace(sqrt(sum(k=0, n, exp(2^k*A)*A^k/k!))))} \\ Andrew Howroyd, Sep 09 2018

Formula

From Andrew Howroyd, Sep 09 2018: (Start)
a(n) = Sum_{k=0..n} Stirling1(n,k)*A047864(k).
E.g.f: sqrt(Sum_{k=0..n} exp(2^k*log(1+x))*log(1+x)^k/k!). (End)

A084270 Number of labeled 2-chromatic (i.e., chromatic number = 2) graphs on n nodes.

Original entry on oeis.org

0, 1, 6, 40, 375, 5176, 103236, 2922445, 116011230, 6433447396, 498234407451, 54007795331920, 8213123246906760, 1756336596363006841, 528975889250504033526, 224688018516023267969440, 134708289561117007261966815
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Crossrefs

Formula

a(n) = A047864(n)-1. - Vladeta Jovovic, Jul 31 2003

Extensions

More terms from Vladeta Jovovic, Jul 31 2003
One further term from David Wasserman, Dec 13 2004
Showing 1-10 of 13 results. Next