A084280
Number of labeled 4-colorable (i.e., chromatic number <= 4) graphs on n nodes.
Original entry on oeis.org
1, 2, 8, 64, 1023, 32596, 2062592, 257798069, 63135260853, 29939766625614, 27055039857514327
Offset: 1
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 8c665c7
- Eric Weisstein's World of Mathematics, n-Colorable Graph
a(7)-a(11) added using tinygraph by
Falk Hüffner, Jun 20 2018
A084281
Number of labeled 5-colorable (i.e., chromatic number <= 5) graphs on n nodes.
Original entry on oeis.org
1, 2, 8, 64, 1024, 32767, 2096731, 268232643, 68572495926, 35005772219631, 35642624717803839
Offset: 1
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 8c665c7
- Eric Weisstein's World of Mathematics, n-Colorable Graph
a(7)-a(11) added using tinygraph by
Falk Hüffner, Jun 20 2018
A084282
Number of labeled 6-colorable (i.e., chromatic number <= 6) graphs on n nodes.
Original entry on oeis.org
1, 2, 8, 64, 1024, 32768, 2097151, 268434467, 68718375600, 35182553667342, 36023832051695607
Offset: 1
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 8c665c7
- Eric Weisstein's World of Mathematics, n-Colorable Graph
a(8)-a(11) added using tinygraph by
Falk Hüffner, Jun 20 2018
A084283
Number of connected labeled 3-colorable (i.e., chromatic number <= 3) graphs on n nodes.
Original entry on oeis.org
1, 1, 4, 37, 667, 21886, 1262719, 125387767, 21009091072, 5809425721381, 2596693747042999, 1844571022305443422
Offset: 1
A084271
Number of labeled 3-chromatic (i.e., chromatic number = 3) graphs on n nodes.
Original entry on oeis.org
0, 0, 1, 22, 582, 22377, 1353810, 134222308, 22133512793, 6025984082738, 2662612877308658, 1876486379430019037
Offset: 1
A084272
Number of labeled 4-chromatic (i.e., chromatic number = 4) graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 1, 65, 5042, 605545, 120653315, 40885736829, 23907349095479, 24391928745798217
Offset: 1
Showing 1-6 of 6 results.