A001752
Expansion of 1/((1+x)*(1-x)^5).
Original entry on oeis.org
1, 4, 11, 24, 46, 80, 130, 200, 295, 420, 581, 784, 1036, 1344, 1716, 2160, 2685, 3300, 4015, 4840, 5786, 6864, 8086, 9464, 11011, 12740, 14665, 16800, 19160, 21760, 24616, 27744, 31161, 34884, 38931, 43320, 48070, 53200, 58730, 64680, 71071, 77924, 85261
Offset: 0
There are 4 binary 3 X 2 matrices with 1 unit column up to row and column permutations:
[0 0] [0 0] [0 1] [0 1]
[0 0] [0 1] [0 1] [0 1]
[0 1] [1 1] [1 0] [1 1].
For n=5, the numbers of the octahedra, starting from the smallest size, are Te(5)=35, Te(3)=10, and Te(1)=1, the sum being 46. Te denotes the tetrahedral number A000292. - _V.J. Pohjola_, Sep 13 2012
- T. A. Saaty, The Minimum Number of Intersections in Complete Graphs, Proc. Natl. Acad. Sci. USA., 52 (1964), 688-690.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 4.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Cf.
A000217,
A000292,
A000332,
A000929,
A002620,
A004526,
A010751,
A056885,
A057524,
A108561,
A152205,
A216172,
A216173,
A216175.
-
[Floor(((n+3)^2-1)*((n+3)^2-3)/48): n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A001752:=n->(3*(-1)^n+93+168*n+100*n^2+24*n^3+2*n^4)/96:
seq(A001752(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2015
-
a = {1, 4}; Do[AppendTo[a, a[[n - 2]] + (n*(n + 1)*(n + 2))/6], {n, 3, 10}]; a
(* Number of octahedra *) nnn = 100; Teo[n_] := (n - 1) n (n + 1)/6
Table[Sum[Teo[n - nn], {nn, 0, n - 1, 2}], {n, 1, nnn}]
(* V.J. Pohjola, Sep 13 2012 *)
LinearRecurrence[{4,-5,0,5,-4,1},{1,4,11,24,46,80},50] (* Harvey P. Dale, Feb 07 2019 *)
-
a(n)=if(n<0,0,((n+3)^2-1)*((n+3)^2-3)/48-if(n%2,1/16))
-
a(n)=(n^4+12*n^3+50*n^2+84*n+46)\/48 \\ Charles R Greathouse IV, Sep 13 2012
A057669
Triangle T(n,k) of number of minimal 3-covers of an unlabeled n+3-set that cover k points of that set uniquely (k=3,..,n+3).
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 7, 7, 6, 3, 11, 13, 14, 9, 4, 16, 22, 26, 21, 13, 5, 23, 34, 44, 40, 31, 17, 7, 31, 50, 68, 68, 59, 41, 23, 8, 41, 70, 100, 106, 101, 79, 55, 28, 10, 53, 95, 140, 157, 158, 136, 106, 68, 35, 12, 67, 125, 190, 221, 234, 214, 182, 132, 85, 42, 14, 83, 161
Offset: 0
[1], [2, 1], [4, 3, 2], [7, 7, 6, 3], ...
There are 7 minimal 3-covers of an unlabeled 6-set that cover 3 points of that set uniquely: {{1}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
A057222
Number of 4 X n binary matrices with 1 unit column up to row and column permutations.
Original entry on oeis.org
1, 6, 27, 102, 333, 969, 2572, 6309, 14472, 31333, 64500, 127011, 240475, 439626, 778848, 1341286, 2251350, 3691629, 5925443, 9326451, 14417175, 21918490, 32812572, 48422262, 70510271, 101402091, 144137322, 202654565, 282015876, 388677651, 530815688, 718713015, 965220510
Offset: 1
A057968
Triangle T(n,k) of numbers of minimal 5-covers of an unlabeled n+5-set that cover k points of that set uniquely (k=5,..,n+5).
Original entry on oeis.org
1, 4, 1, 19, 7, 2, 91, 46, 16, 3, 436, 279, 115, 28, 5, 1991, 1563, 740, 221, 49, 7, 8651, 7978, 4309, 1524, 405, 75, 10, 35354, 37290, 22604, 9272, 2875, 659, 115, 13, 135617, 159948, 107584, 50058, 17840, 4866, 1042, 163, 18, 488312, 633211
Offset: 0
[1], [4, 1], [19, 7, 2], [91, 46, 16, 3], [436, 279, 115, 28, 5], ...; there are 46 minimal 5-covers of an unlabeled 8-set that cover 6 points of that set uniquely.
Cf.
A001752,
A056885,
A057222,
A057223,
A057524,
A057669,
A057963,
A057964,
A057965,
A057966(labeled case),
A057967.
A035347
Triangle of a(n,k) = number of minimal covers of an n-set that cover k points of that set uniquely (n >= 1, k >= 1).
Original entry on oeis.org
1, 0, 2, 0, 3, 5, 0, 6, 28, 15, 0, 10, 190, 210, 52, 0, 15, 1340, 3360, 1506, 203, 0, 21, 9065, 60270, 48321, 10871, 877, 0, 28, 57512, 1132880, 1820056, 636300, 80592, 4140, 0, 36, 344316, 21067452, 76834926, 45455676, 8081928, 618939, 21147, 0, 45
Offset: 1
1; 0,2; 0,3,5; 0,6,28,15; ...
-
a[n_, k_] := Binomial[n, k] * Sum[ StirlingS2[k, j]*(2^j - j - 1)^(n - k), {j, 1, k}]; a[n_, n_] := Sum[ StirlingS2[n, j], {j, 1, n}]; Flatten[ Table[a[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Jun 26 2012, from formula *)
A057223
Number of 4 X n binary matrices without unit columns up to row and column permutations.
Original entry on oeis.org
1, 4, 14, 44, 127, 335, 830, 1931, 4258, 8943, 17984, 34765, 64873, 117220, 205718, 351552, 586348, 956393, 1528350, 2396631, 3693123, 5599550, 8363304, 12317274, 17904795, 25710327, 36497466, 51255153, 71253960, 98113791, 133885404, 181147299, 243121170, 323807952, 428148174
Offset: 0
A057967
Triangle T(n,k) of numbers of minimal 4-covers of an unlabeled n+4-set that cover k points of that set uniquely (k=4,..,n+4).
Original entry on oeis.org
1, 3, 1, 10, 5, 2, 30, 21, 11, 3, 83, 75, 49, 18, 5, 208, 231, 177, 84, 30, 6, 495, 636, 554, 318, 143, 42, 9, 1101, 1603, 1540, 1023, 543, 210, 62, 11, 2327, 3737, 3907, 2904, 1759, 822, 311, 82, 15, 4685, 8163, 9153, 7470, 5012, 2706, 1219, 423, 111, 18, 9041
Offset: 0
[1], [3, 1], [10, 5, 2], [30, 21, 11, 3], [83, 75, 49, 18], ...; there are 5 minimal 4-covers of an unlabeled 6-set that cover 5 points of that set uniquely.
Cf.
A001752,
A056885,
A057222,
A057223,
A057524,
A057669,
A057963,
A057964,
A057965(labeled case),
A057966,
A057968.
A057972
Number of 5 X n binary matrices with 3 unit columns up to row and column permutations.
Original entry on oeis.org
3, 31, 252, 1776, 11048, 61106, 303664, 1368844, 5651241, 21559133, 76613440, 255411923, 803771681, 2400633464, 6837010458, 18644075466, 48855805143, 123415815229, 301386128354, 713271875603, 1639572164669, 3667859207856
Offset: 3
A057969
5 x n binary matrices without unit columns up to row and column permutations.
Original entry on oeis.org
1, 5, 24, 115, 551, 2542, 11193, 46547, 182164, 670476, 2325506, 7624434, 23716419, 70253721, 198905506, 540079754, 1410786483, 3555443969, 8667153126, 20484365167, 47037898503, 105143200252, 229178029000
Offset: 0
A057970
5 x n binary matrices with 1 unit column up to row and column permutations.
Original entry on oeis.org
1, 8, 54, 333, 1896, 9874, 47164, 207112, 840323, 3168506, 11170331, 37034409, 116095018, 345785753, 982835676, 2676217504, 7005306389, 17681946594, 43153532167, 102080966243, 234565062960, 524594120393, 1143910860870
Offset: 1
Cf.
A001752,
A056885,
A057222,
A057223,
A057524,
A057669,
A057963 -
A057968,
A057970 -
A057972,
A057969,
A057971,
A057972.
Showing 1-10 of 11 results.
Comments