A295285 Numbers n such that for positive integers i, the union of sequences n+22i contains the positive roots of floor(tan(k)) = 1 (A293698).
1, 4, 183, 538, 893, 1248, 1603, 1958, 2313, 2668, 3023, 3378, 3733, 4088, 4443, 4798, 5153, 5508, 5863, 6218, 6573, 6928, 225919, 226274, 226629, 226984, 227339, 227694, 228049, 228404, 228759, 229114, 229469, 229824
Offset: 1
Keywords
Examples
For n = 1, i = 0..12, the terms 1, 23, 45, .., 265 are the roots. For n = 4, i = 0..28, the terms 4, 26, 48, .., 620 are the roots. For n = 183, i = 0..36, the terms 183, 205, 227, .., 975 are the roots. For n = 1, i = 331..367, the terms 7283, 7305, 7327, .., 8075 are the roots. For n = 4, i = 347..383, the terms 7638, 7660, 7682, .., 8430 are the roots. For n = 183, i = 355..391, the terms 7993, 8015, 8037, .., 8785 are the roots. The subsequences have the length of either 36 or 37 beyond the initial ranges 1+22i and 4+22i which are 13 and 29, respectively.
Links
- V.J. Pohjola, Table of n, a(n) for n = 1..101
- V. J. Pohjola, Line plot for n=1..3
- V. J. Pohjola, Line plot for n=1..100
Programs
-
Mathematica
posroots6 = {}; Do[If[Floor[Tan[n]] == 1, AppendTo[posroots6, n]], {n, 0, 10^6}] bigroots = {1}; posrootsi = {{1}}; Do[jj = {}; Do[lastb = Last[bigroots]; If[MemberQ[posroots6, lastb + 22*j], AppendTo[jj, j]], {j, 0, 10^4}]; posrootsi = Flatten[AppendTo[posrootsi, Table[lastb + 22*jj[[k]], {k, 1, Length[jj]}]]]; bigroot = First[Complement[posroots6, posrootsi]]; AppendTo[bigroots, bigroot], {i, 1, 100}]; bigroots
Extensions
Name edited by V.J. Pohjola, Mar 15 2018
Comments