A293698 Values of positive integer i such that floor(tan(i)) = 1.
1, 4, 23, 26, 45, 48, 67, 70, 89, 92, 111, 114, 133, 136, 155, 158, 177, 180, 183, 199, 202, 205, 221, 224, 227, 243, 246, 249, 265, 268, 271, 290, 293, 312, 315, 334, 337, 356, 359, 378, 381, 400, 403, 422, 425, 444, 447, 466, 469, 488, 491, 510, 513, 532, 535, 538, 554, 557, 560, 576, 579, 582, 598, 601, 604, 620
Offset: 1
Keywords
Examples
The values of floor(tan(i)), starting from i=0, are given in A000503. Those i, for which floor(tan(i))=1 is true, are the roots of this equation. Thus the roots are the positions of 1 in A000503(i>0). For n=1, i=1; a(1)=1. For n=2, i=4; a(2)=4. For n=3, i=23; a(3)=23.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
rootsp = Flatten[Position[Table[Floor[Tan[i]], {i, 1, 10^3}], 1]] (* a(n) = rootsp[[n]] *) (* Alternatively: *) rootsp = {}; Do[If[Floor[Tan[n]] == 1, AppendTo[rootsp, n]], {n, 1, 10^3}] rootsp (* a(n) = rootsp[[n]] *) Select[ Range@ 622, Floor@ Tan@ # == 1 &] (* Robert G. Wilson v, Nov 06 2017 *)
-
PARI
isok(n) = floor(tan(n)) == 1; \\ Michel Marcus, Oct 24 2017
-
PARI
first(n) = {my(res = vector(n), i = 0, pi = [Pi, Pi], sols = [atan(1), atan(2)]); while(1, for(j = ceil(sols[1]), floor(sols[2]), i++; if(i>n, return(res)); res[i] = j); sols+=[Pi(), Pi()])} \\ David A. Corneth, Oct 24 2017
Comments