cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A211795 Number of (w,x,y,z) with all terms in {1,...,n} and w*x < 2*y*z.

Original entry on oeis.org

0, 1, 11, 58, 177, 437, 894, 1659, 2813, 4502, 6836, 10008, 14121, 19449, 26117, 34372, 44422, 56597, 71044, 88160, 108115, 131328, 158074, 188773, 223604, 263172, 307719, 357715, 413493, 475690, 544480, 620632, 704381, 796413
Offset: 0

Views

Author

Clark Kimberling, Apr 27 2012

Keywords

Comments

Each sequence in the following guide counts 4-tuples
(w,x,y,z) such that the indicated relation holds and the four numbers w,x,y,z are in {1,...,n}. The notation "m div" means that m divides every term of the sequence.
A211058 ... wx <= yz
A211787 ... wx <= 2yz
A211795 ... wx < 2yz
A211797 ... wx > 2yz
A211809 ... wx >= 2yz
A211812 ... wx <= 3yz
A211917 ... wx < 3yz
A211918 ... wx > 3yz
A211919 ... wx >= 3yz
A211920 ... 2wx < 3yz
A211921 ... 2wx <= 3yz
A211922 ... 2wx > 3yz
A211923 ... 2wx >= 3yz
A212019 ... wx = 2yz ..... 2 div
A212020 ... wx = 3yz ..... 2 div
A212021 ... 2wx = 3yz .... 2 div
A212047 ... wx = 4yz
A212048 ... 3wx = 4yz .... 2 div
A212049 ... wx = 5yz ..... 2 div
A212050 ... 2wx = 5yz .... 2 div
A212051 ... 3wx = 5yz .... 2 div
A212052 ... 4wx = 5yz .... 2 div
A209978 ... wx = yz + 1 .. 2 div
A212053 ... wx <= yz + 1
A212054 ... wx > yz + 1
A212055 ... wx <= yz + 2
A212056 ... wx > yz + 2
A197168 ... wx = yz + 2 .. 2 div
A061201 ... w = xyz
A212057 ... w < xyz
A212058 ... w >= xyz
A212059 ... w = xyz - 1
A212060 ... w = xyz - 2
A212061 ... wx = (yz)^2
A212062 ... w^2 = xyz
A212063 ... w^2 < xyz
A212064 ... w^2 >= xyz
A212065 ... w^2 <= xyz
A212066 ... w^2 > xyz
A212067 ... w^3 = xyz
A002623 ... w = 2x + y + z
A006918 ... w = 2x + 2y + z
A000601 ... w = x + 2y + 3z (except for initial 0's)
A212068 ... 2w = x + y + z
A212069 ... 3w = x + y + z (w = average{x,y,z})
A212088 ... 3w < x + y + z
A212089 ... 3w >= x + y + z
A212090 ... w < x + y + z
A000332 ... w >= x + y + z
A212145 ... w < 2x + y + z
A001752 ... w >= 2x + y + z
A001400 ... w = 2x +3y + 4z
A005900 ... w = -x + y + z
A192023 ... w = -x + y + z + 2
A212091 ... w^2 = x^2 + y^2 + z^2 ... 3 div
A212087 ... w^2 + x^2 = y^2 + z^2
A212092 ... w^2 < x^2 + y^2 + z^2
A212093 ... w^2 <= x^2 + y^2 + z^2
A212094 ... w^2 > x^2 + y^2 + z^2
A212095 ... w^2 >= x^2 + y^2 + z^2
A212096 ... w^3 = x^3 + y^3 + z^3 ... 6 div
A212097 ... w^3 < x^3 + y^3 + z^3
A212098 ... w^3 <= x^3 + y^3 + z^3
A212099 ... w^3 > x^3 + y^3 + z^3
A212100 ... w^3 >= x^3 + y^3 + z^3
A212101 ... wx^2 = yz^2
A212102 ... 1/w = 1/x + 1/y + 1/z
A212103 ... 3/w = 1/x + 1/y + 1/z; w = h.m. of {x,y,z}
A212104 ... 3/w >= 1/x + 1/y + 1/z; w >= h.m.
A212105 ... 3/w < 1/x + 1/y + 1/z; w < h.m.
A212106 ... 3/w > 1/x + 1/y + 1/z; w > h.m.
A212107 ... 3/w <= 1/x + 1/y + 1/z; w <= h.m.
A212133 ... median(w,x,y,z) = mean(w,x,y,z)
A212134 ... median(w,x,y,z) <= mean(w,x,y,z)
A212135 ... median(w,x,y,z) > mean(w,x,y,z)
A212241 ... wx + yz > n
A212243 ... 2wx + yz = n
A212244 ... w = xyz - n
A212245 ... w = xyz - 2n
A212246 ... 2w = x + y + z - n
A212247 ... 3w = x + y + z + n
A212249 ... 3w < x + y + z + n
A212250 ... 3w >= x + y + z + n
A212251 ... 3w = x + y + z + n + 1
A212252 ... 3w = x + y + z + n + 2
A212254 ... w = x + 2y + 3z - n
A212255 ... w^2 = mean(x^2, y^2, z^2)
A212256 ... 4/w = 1/x + 1/y +1/z + 1/n
In the list above, if the relation in the second column is of the form "w rel ax + by + cz" then the sequence is linearly recurrent. In the list below, the same is true for expressions involving more than one relation.
A000332 ... w < x <= y < z .... C(n,4)
A000914 ... w < x <= y < z .... Stirling 1st kind
A000914 ... w < x <= y >= z ... Stirling 1st kind
A050534 ... w < x < y >= z .... tritriangular
A001296 ... w <= x <= y >= z .. 4-dim pyramidal
A006322 ... x < x > y >= z
A002418 ... w < x >= y < z
A050534 ... w < x >=y >= z
A212415 ... w < x >= y <= z
A001296 ... w < x >= y <= z
A212246 ... w <= x > y <= z
A006322 ... w <= x >= y <= z
A212501 ... w > x < y >= z
A212503 ... w < 2x and y < 2z ..... A (note below)
A212504 ... w < 2x and y > 2z ..... A
A212505 ... w < 2x and y >= 2z .... A
A212506 ... w <= 2x and y <= 2z ... A
A212507 ... w < 2x and y <= 2z .... B
A212508 ... w < 2x and y < 3z ..... C
A212509 ... w < 2x and y <= 3z .... C
A212510 ... w < 2x and y > 3z ..... C
A212511 ... w < 2x and y >= 3z .... C
A212512 ... w <= 2x and y < 3z .... C
A212513 ... w <= 2x and y <= 3z ... C
A212514 ... w <= 2x and y > 3z .... C
A212515 ... w <= 2x and y >= 3z ... C
A212516 ... w > 2x and y < 3z ..... C
A212517 ... w > 2x and y <= 3z .... C
A212518 ... w > 2x and y > 3z ..... C
A212519 ... w > 2x and y >= 3z .... C
A212520 ... w >= 2x and y < 3z .... C
A212521 ... w >= 2x and y <= 3z ... C
A212522 ... w >= 2x and y > 3z .... C
A212523 ... w + x < y + z
A212560 ... w + x <= y + z
A212561 ... w + x = 2y + 2z
A212562 ... w + x < 2y + 2z ....... B
A212563 ... w + x <= 2y + 2z ...... B
A212564 ... w + x > 2y + 2z ....... B
A212565 ... w + x >= 2y + 2z ...... B
A212566 ... w + x = 3y + 3z
A212567 ... 2w + 2x = 3y + 3z
A212570 ... |w - x| = |x - y| + |y - z|
A212571 ... |w - x| < |x - y| + |y - z| ... B ... 4 div
A212572 ... |w - x| <= |x - y| + |y - z| .. B
A212573 ... |w - x| > |x - y| + |y - z| ... B ... 2 div
A212574 ... |w - x| >= |x - y| + |y - z| .. B
A212575 ... 2|w - x| = |x - y| + |y - z|
A212576 ... |w - x| = 2|x - y| + 2|y - z|
A212577 ... |w - x| = 2|x - y| - |y - z|
A212578 ... 2|w - x| = |x - y| - |y - z|
A212579 ... min{|w-x|,|w-y|} = min{|x-y|,|x-z|}
A212692 ... w = |x - y| + |y - z| ............... 2 div
A212568 ... w < |x - y| + |y - z| ............... 2 div
A212573 ... w <= |x - y| + |y - z| .............. 2 div
A212574 ... w > |x - y| + |y - z|
A212575 ... w >= |x - y| + |y - z|
A212676 ... w + x = |x - y| + |y - z| ......... H
A212677 ... w + y = |x - y| + |y - z|
A212678 ... w + x + y = |x - y| + |y - z|
A006918 ... w + x + y + z = |x - y| + |y - z| . H
A212679 ... |x - y| = |y - z| ................. H
A212680 ... |x - y| = |y - z| + 1 ..............H 2 div
A212681 ... |x - y| < |y - z| ................... 2 div
A212682 ... |x - y| >= |y - z|
A212683 ... |x - y| = w + |y - z| ............... 2 div
A212684 ... |x - y| = n - w + |y - z|
A212685 ... |w - x| = w + |y - z|
A186707 ... |w - x| < w + |y - z| ... (Note D)
A212714 ... |w - x| >= w + |y - z| .......... H . 2 div
A212686 ... 2*|w - x| = n + |y - z| ............. 4 div
A212687 ... 2*|w - x| < n + |y - z| ......... B
A212688 ... 2*|w - x| < n + |y - z| ......... B . 2 div
A212689 ... 2*|w - x| > n + |y - z| ......... B . 2 div
A212690 ... 2*|w - x| <= n + |y - z| ........ B
A212691 ... w + |x - y| = |x - z| + |y - z| . E . 2 div
...
In the above lists, all the terms of (w,x,y,z) are in {1,...,n}, but in the next lists they are all in {0,...,n}, and sequences are all linearly recurrent.
R=range{w,x,y,z}=max{w,x,y,z}-min{w,x,y,z}.
A212740 ... max{w,x,y,z} < 2*min{w,x,y,z} .... A
A212741 ... max{w,x,y,z} >= 2*min{w,x,y,z} ... A
A212742 ... max{w,x,y,z} <= 2*min{w,x,y,z} ... A
A212743 ... max{w,x,y,z} > 2*min{w,x,y,z} .... A . 2 div
A212744 ... w=range (=max-min) ............... E
A212745 ... w=max{w,x,y,z} - 2*min{w,x,y,z}
A212746 ... R is in {w,x,y,z} ................ E
A212569 ... R is not in {w,x,y,z} ............ E
A212749 ... w=R or x
A212750 ... w=R or x=R or y
A212751 ... w=R or x=R or y
A212752 ... wR ......... A
A212753 ... wR or z>R ......... D
A212754 ... wR or y>R or z>R ......... D
A002415 ... w = x + R ........................ D
A212755 ... |w - x| = R ...................... D
A212756 ... 2w = x + R
A212757 ... 2w = R
A212758 ... w = floor(R/2)
A002413 ... w = floor((x+y+z/2))
A212759 ... w, x, y are even
A212760 ... w is even and x = y + z .......... E
A212761 ... w is odd and x and y are even .... F . 2 div
A212762 ... w and x are odd y is even ........ F . 2 div
A212763 ... w, x, y are odd .................. F
A212764 ... w, x, y are even and z is odd .... F
A030179 ... w and x are even and y and z odd
A212765 ... w is even and x,y,z are odd ...... F
A212766 ... w is even and x is odd ........... A . 2 div
A212767 ... w and x are even and w+x=y+z ..... E
A212889 ... R is even ........................ A
A212890 ... R is odd ......................... A . 2 div
A212742 ... w-x, x-y, y-z are all even ....... A
A212892 ... w-x, x-y, y-z are all odd ........ A
A212893 ... w-x, x-y, y-z have same parity ... A
A005915 ... min{|w-x|, |x-y|, |y-z|} = 0
A212894 ... min{|w-x|, |x-y|, |y-z|} = 1
A212895 ... min{|w-x|, |x-y|, |y-z|} = 2
A179824 ... min{|w-x|, |x-y|, |y-z|} > 0
A212896 ... min{|w-x|, |x-y|, |y-z|} <= 1
A212897 ... min{|w-x|, |x-y|, |y-z|} > 1
A212898 ... min{|w-x|, |x-y|, |y-z|} <= 2
A212899 ... min{|w-x|, |x-y|, |y-z|} > 2
A212901 ... |w-x| = |x-y| = |y-z|
A212900 ... |w-x|, |x-y|, |y-z| are distinct . G
A212902 ... |w-x| < |x-y| < |y-z| ............ G
A212903 ... |w-x| <= |x-y| <= |y-z| .......... G
A212904 ... |w-x| + |x-y| + |y-z| = n ........ H
A212905 ... |w-x| + |x-y| + |y-z| = 2n ....... H
...
Note A: A212503-A212506 (and others) have these recurrence coefficients: 2,2,-6,0,6,-2,-2,1.
B: 3,-1,-5,5,1,-3,1
C: 0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1
D: 4,-5,0,5,-4,1
E: 1,3,-3,-3,3,1,-1
F: 1,4,-4,-6,6,4,-4,-1,1
G: 2,1,-3,-1,1,3,-1,-2,1
H: 2,1,-4,1,2,-1

Examples

			a(2)=11 counts these (w,x,y,z): (1,1,1,1), (1,1,1,2), (1,1,2,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2), (1,1,2,2), (1,2,2,2), (2,1,2,2), (2,2,2,2).
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w*x < 2 y*z, s = s + 1], {w, 1, #},
          {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A211795 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = n^4 - A211809(n).

A002623 Expansion of 1/((1-x)^4*(1+x)).

Original entry on oeis.org

1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0

Keywords

Comments

Also a(n) is the number of nondegenerate triangles that can be made from rods of lengths 1 to n+1. - Alfred Bruckstein; corrected by Hans Rudolf Widmer, Nov 02 2023
Also number of circumscribable (or escrible) quadrilaterals that can be made from rods of length 1,2,3,4,...,n. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
Also number of 2 X n binary matrices up to row and column permutation (see the link: Binary matrices up to row and column permutations). - Vladeta Jovovic
Also partial sum of alternate triangular numbers (1, 3, 1+6, 3+10, 1+6+15, 3+10+21, etc.); and also number of triangles pointing in opposite direction to largest triangle in triangular matchstick arrangement of side n+2 (cf. A002717, also the Larsen article). - Henry Bottomley, Aug 08 2000
Ordered union of A002412(n+1) and A016061(n+1). - Lekraj Beedassy, Oct 13 2003
Also Molien series for certain 4-D representation of cyclic group of order 2. - N. J. A. Sloane, Jun 12 2004
From Radu Grigore (radugrigore(AT)gmail.com), Jun 19 2004: (Start)
a(n) = floor( (n+2)*(n+4)*(2n+3) / 24 ). E.g., a(2) = floor(4*6*7/24) = 7 because there are 7 upside down triangles (6 of size one and 1 of size two) in the matchstick figure:
/\
/\/\
/\/\/\
/\/\/\/\
(End)
Number of non-congruent non-parallelogram trapezoids with positive integer sides (trapezints) and perimeter 2n+5. Also with perimeter 2n+8. - Michael Somos, May 12 2005
a(n) = A108561(n+4,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
Also number of nonisomorphic planes with n points and 2 lines. E.g., a(0)=1 because with no points, we just have two empty lines. a(1)=3 because the one point may belong to 0, 1 or 2 lines. a(2)=7 because there are 7 ways to determine which of 2 points belong to which of 2 lines, up to isomorphism, i.e., up to a bijection f on the sets of points and a bijection g on the sets of lines, such that A belongs to a iff f(A) belongs to g(a). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
a(n-2) is the number of ways to pick two non-overlapping subwords of equal nonzero length from a word of length n. E.g., a(5-2)=a(3)=13 since the word 12345 of length 5 has the following subword pairs: 1,2; 1,3; 1,4; 1,5; 2,3; 2,4; 2,5; 3,4; 3,5; 4,5; 12,34; 12,45; 23,45. - Michael Somos, Oct 22 2006
Partial sums of A002620. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
From Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007: (Start)
Also number of squares of any size in a staircase of n steps built with unit squares:
||__
||__|
||__||
For a staircase of 3 steps 6 squares of size 1 and 1 square of size 2, hence c(3)=7.
Columns sums of:
1 3 6 10 15 21 28 ...
1 3 6 10 15 ...
1 3 6 ...
1 ...
---------------------
1 3 7 13 22 34 50 ...
(End)
a(n) = sum of row n+1 of triangle A134446. Also, binomial transform of [1, 2, 2, 0, 1, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
Let b(n) be the number of 4-tuples (w,x,y,z) having all terms in {1,...,n} and 2w=x+y+z+n; then b(n+3) = a(n) for n >= 0. - Clark Kimberling, May 08 2012
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w >= x+y and x <= y. - Clark Kimberling, Jun 04 2012
Also, number of unlabeled bipartite graphs with two left vertices and n right vertices. - Yavuz Oruc, Jan 14 2018
Also number of triples (x,y,z) with 0 < x <= y <= z <= n + 1, x + y > z. - Ralf Steiner, Feb 06 2020
Bisections A002412 and A016061: a(2*k) = k*(k+1)*(4*k-1)/3! and a(2*k+1) = (k+1)*(k+2)*(4*k+9)/3!, for k >= 0. See the Woolhouse link, II. Solution by Stephen Watson, p. 65, with index shifts. - Mo Li, Apr 02 2020
Also, Wiener index of the square of the path graph P_(n+2). - Allan Bickle, Aug 01 2020
Maximum Wiener index of all maximal 2-degenerate graphs with n+2 vertices. (A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices.) The extremal graphs are squares of paths, so the bound also applies to 2-trees and maximal outerplanar graphs. - Allan Bickle, Sep 15 2022

Examples

			G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
  • H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002620 (first differences), A000292, A001752 (partial sums), A062109 (binomial transf.).
Bisections A002412, A016061.
Cf. also A002717 (a companion sequence), A002727, A006148, A057524, A134446, A014125, A122046, A122047.
The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623 (this sequence), A014125, A122046, A122047, A175724, respectively.

Programs

  • Maple
    A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2;
    seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis
    a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48:
    seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
  • Mathematica
    CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *)
    Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *)
    a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
  • PARI
    {a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
    
  • PARI
    x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
    
  • Python
    def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024

Formula

a(n+1) = a(n) + {(k-1)*k if n=2*k} or {k*k if n=2*k+1}.
a(n)+a(n+1) = A000292(n+1).
a(n) = a(n-2) + A000217(n+1) = A002717(n+2) - A000292(n+1).
Also: a(n) = C(n+3, 3) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+3,3).
The signed version 1, -3, 7, ... has the formula:
a(n) = (4*n^3 + 30*n^2 + 68*n + 45)*(-1)^n/48 + 1/16.
This is the partial sums of the signed version of A000292. (End)
From Paul Barry, Jul 21 2003: (Start)
a(n) = Sum_{k=0..n} floor((k+2)^2/4).
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (1+(-1)^i)/2. (End)
a(n) = a(n - 2) + (n*(n - 1))/2, with n>2, a(1)=0, a(2)=1; a(n) = (4*n^3+6*n^2-4*n+3*(-1)^n-3)/48, with offset 2. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004 (formula simplified by Bruno Berselli, Aug 29 2013)
a(n) = ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4, with offset 1. - Jerry W. Lewis (JLewis(AT)wyeth.com), Mar 23 2005
a(n) = 2*a(n-1) - a(n-2) + 1 + floor(n/2). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
A002620(n+3) = a(n+1) - a(n). - Michael Somos, Sep 04 1999
Euler transform of length 2 sequence [ 3, 1]. - Michael Somos, Sep 04 2006
a(n) = -a(-5-n) for all n in Z. - Michael Somos, Sep 04 2006
Let P(i,k) be the number of integer partitions of n into k parts, then with k=2 we have a(n) = sum_{m=1}^{n} sum_{i=k}^{m} P(i,k). For k=1 we get A000217 = triangular numbers. - Thomas Wieder, Feb 18 2007
a(n) = (n+(3+(-1)^n)/2)*(n+(7+(-1)^n)/2)*(2*n+5-2*(-1)^n)/24. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007 (corrected by Bruno Berselli, Aug 30 2013)
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A006918(n+1) + A006918(n).
a(n) = A058187(n-2) + 2*A058187(n-1) + A058187(n). (End)
a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22; for n > 4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Harvey P. Dale, Jul 19 2011
a(n) = Sum_{i=0..n+2} floor(i/2)*ceiling(i/2). - Bruno Berselli, Aug 30 2013
a(n) = 15/16 + (1/16)*(-1)^n + (17/12)*n + (5/8)*n^2 + (1/12)*n^3. - Robert Israel, Jul 07 2014
a(n) = Sum_{i=0..n+2} (n+1-i)*floor(i/2+1). - Bruno Berselli, Apr 04 2017
a(n) = 1 + floor((2*n^3 + 15*n^2 + 34*n) / 24). - Allan Bickle, Aug 01 2020
E.g.f.: ((24 + 51*x + 21*x^2 + 2*x^3)*cosh(x) + (21 + 51*x + 21*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021

A059260 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Coefficients of the (left, normalized) shifted cyclotomic polynomial. Or, coefficients of the basic n-th q-series for q=-2. Indeed, let Y_n(x) = Sum_{k=0..n} x^k, having as roots all the n-th roots of unity except for 0; then coefficients in x of (-1)^n Y_n(-x-1) give exactly the n-th row of A059260 and a practical way to compute it. - Olivier Gérard, Jul 30 2002
The maximum in the (2n)-th row is T(n,n), which is A026641; also T(n,n) ~ (2/3)*binomial(2n,n). The maximum in the (2n-1)-th row is T(n-1,n), which is A014300 (but T does not have the same definition as in A026637); also T(n-1,n) ~ (1/3)*binomial(2n,n). Here is a generalization of the formula given in A026641: T(i,j) = Sum_{k=0..j} binomial(i+k-x,j-k)*binomial(j-k+x,k) for all x real (the proof is easy by induction on i+j using T(i,j) = T(i-1,j) + T(i,j-1)). - Claude Morin, May 21 2002
The second greatest term in the (2n)-th row is T(n-1,n+1), which is A014301; the second greatest term in the (2n+1)-th row is T(n+1,n) = 2*T(n-1,n+1), which is 2*A014301. - Claude Morin
Diagonal sums give A008346. - Paul Barry, Sep 23 2004
Riordan array (1/(1-x^2), x/(1-x)). As a product of Riordan arrays, factors into the product of (1/(1+x),x) and (1/(1-x),1/(1-x)) (binomial matrix). - Paul Barry, Oct 25 2004
Signed version is A239473 with relations to partial sums of sequences. - Tom Copeland, Mar 24 2014
From Robert Coquereaux, Oct 01 2014: (Start)
Columns of the triangle (cf. Example below) give alternate partial sums along nw-se diagonals of the Pascal triangle, i.e., sequences A000035, A004526, A002620 (or A087811), A002623 (or A173196), A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808, etc.
The dimension of the space of closed currents (distributional forms) of degree p on Gr(n), the Grassmann algebra with n generators, equivalently, the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence, is V(n,p) = 2^n T(p,n-1) - (-1)^p.
If p is odd V(n,p) is also the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n).
If p is even the dimension of this cohomology group is V(n,p)+1.
Cf. A193844. (End)
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = x, R(3,x) = 1 + x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)
From Miquel A. Fiol, Oct 04 2024: (Start)
For j>=1, T(i,j) is the independence number of the (i-j)-supertoken graph FF_(i-j)(S_j) of the star graph S_j with j points.
(Given a graph G on n vertices and an integer k>=1, the k-supertoken (or reduced k-th power) FF_k(G) of G has vertices representing configurations of k indistinguishable tokens in the (not necessarily different) vertices of G, with two configurations being adjacent if one can be obtained from the other by moving one token along an edge. See an example below.)
Following the suggestion of Peter Munn, the k-supertoken graph FF_k(S_j) can also be defined as follows: Consider the Lattice graph L(k,j), whose vertices are the k^j j-vectors with elements in the set {0,..,k-1}, two being adjacent if they differ in just one coordinate by one unity. Then, FF_k(S_j) is the subgraph of L(k+1,j) induced by the vertices at distance at most k from (0,..,0). (End)

Examples

			Triangle begins
  1;
  0,  1;
  1,  1,  1;
  0,  2,  2,  1;
  1,  2,  4,  3,  1;
  0,  3,  6,  7,  4,  1;
  1,  3,  9, 13, 11,  5,  1;
  0,  4, 12, 22, 24, 16,  6,  1;
  1,  4, 16, 34, 46, 40, 22,  7,  1;
  0,  5, 20, 50, 80, 86, 62, 29,  8,  1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007  A000012  A000027  A025747  A000292* A000332* A000389*
A059841  A008619  A087811* A002623  A001752  A001753  A001769
A193356  A008794* A005993  A005994  -------  -------  -------
-------  -------  -------  A005995  A018210  -------  A052267
-------  -------  -------  -------  A018211  A018212  -------
-------  -------  -------  -------  -------  A018213  A018214
-------  -------  -------  -------  -------  -------  A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
     22--12---24---14---44
          | \    / |
         23   11   34
            \  |  /
              13
               |
              33
		

Crossrefs

Cf. A059259. Row sums give A001045.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808 etc. (allowing for signs). A058393 would then effectively provide the table for nonpositive n. - Henry Bottomley, Jun 25 2001

Programs

  • Maple
    read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
  • PARI
    T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
    for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
    for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Sage
    def A059260_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
    for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1-y-x*y-x^2) = 1 + y + x^2 + xy + y^2 + 2x^2y + 2xy^2 + y^3 + ...
E.g.f: (exp(-t)+(x+1)*exp((x+1)*t))/(x+2). - Tom Copeland, Mar 19 2014
O.g.f. (n-th row): ((-1)^n+(x+1)^(n+1))/(x+2). - Tom Copeland, Mar 19 2014
T(i, 0) = 1 if i is even or 0 if i is odd, T(0, i) = 1 and otherwise T(i, j) = T(i-1, j) + T(i, j-1); also T(i, j) = Sum_{m=j..i+j} (-1)^(i+j+m)*binomial(m, j). - Robert FERREOL, May 17 2002
T(i, j) ~ (i+j)/(2*i+j)*binomial(i+j, j); more precisely, abs(T(i, j)/binomial(i+j, j) - (i+j)/(2*i+j) )<=1/(4*(i+j)-2); the proof is by induction on i+j using the formula 2*T(i, j) = binomial(i+j, j)+T(i, j-1). - Claude Morin, May 21 2002
T(n, k) = Sum_{j=0..n} (-1)^(n-j)binomial(j, k). - Paul Barry, Aug 25 2004
T(n, k) = Sum_{j=0..n-k} binomial(n-j, j)*binomial(j, n-k-j). - Paul Barry, Jul 25 2005
Equals A097807 * A007318. - Gary W. Adamson, Feb 21 2007
Equals A128173 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Feb 17 2007
Equals A130595*A097805*A007318 = (inverse Pascal matrix)*(padded Pascal matrix)*(Pascal matrix) = A130595*A200139. Inverse is A097808 = A130595*(padded A130595)*A007318. - Tom Copeland, Nov 14 2016
T(i, j) = binomial(i+j, j)-T(i-1, j). - Laszlo Major, Apr 11 2017
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = x*R(n-1,x) + (x + 1)*R(n-2,x) with R(1,x) = 1 and R(2,x) = x. - Peter Bala, Feb 07 2024
From Miquel A. Fiol, Sep 30 2024: (Start)
The triangle can be seen as a slice of a 3-dimensional table that links it to well-known sequences as follows.
The j-th column of the triangle, T(i,j) for i >= j, equals A(n,c1,c2) = Sum_{k=0..floor(n/2)} binomial(c1+2*k-1,2*k)*binomial(c2+n-2*k-1,n-2*k) when c1=1, c2=j, and n=i-j.
This gives T(i,j) = Sum_{k=0..floor((i-j)/2)} binomial(i-2*k-1, j-1). For other values of (c1,c2), see the example below. (End)

Extensions

Formula corrected by Philippe Deléham, Jan 11 2014

A047659 Number of ways to place 3 nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 24, 204, 1024, 3628, 10320, 25096, 54400, 107880, 199400, 348020, 579264, 926324, 1431584, 2148048, 3141120, 4490256, 6291000, 8656860, 11721600, 15641340, 20597104, 26797144, 34479744, 43915768, 55411720, 69312516, 86004800, 105919940
Offset: 0

Keywords

Comments

Lucas mentions that the number of ways of placing p <= n non-attacking queens on an n X n chessboard is given by a polynomial in n of degree 2p and attribute the result to Mantel, professor in Delft. Cf. Stanley, exercise 15.

References

  • E. Landau, Naturwissenschaftliche Wochenschrift (Aug. 2 1896).
  • R. P. Stanley, Enumerative Combinatorics, vol. I, exercise 15 in chapter 4 (and its solution) asks one to show the existence of a rational generating function for the number of ways of placing k non-attacking queens on an n X n chessboard.

Crossrefs

Column k=3 of A348129.

Programs

  • Magma
    [(3*(2*n-1)*(-1)^n +4*n^6 -40*n^5 +158*n^4 -300*n^3 +264*n^2 -86*n +3)/24: n in [0..35]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    f:=n-> n^6/6 - 5*n^5/3 + 79*n^4/12 - 25*n^3/2 + 11*n^2 - 43*n/12 + 1/8 + (-1)^n*(n/4 - 1/8); [seq(f(n),n=1..40)]; # N. J. A. Sloane, Feb 16 2013
  • Mathematica
    Table[If[EvenQ[n],n (n-2)^2 (2n^3-12n^2+23n-10)/12,(n-1)(n-3) (2n^4- 12n^3+25n^2-14n+1)/12],{n,0,30}] (* or *) LinearRecurrence[ {5,-8,0,14,-14,0,8,-5,1},{0,0,0,0,24,204,1024,3628,10320},30] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    a(n)=if(n%2, (n - 1)*(n - 3)*(2*n^4 - 12*n^3 + 25*n^2 - 14*n + 1), n*(n - 2)^2*(2*n^3 - 12*n^2 + 23*n - 10))/12 \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = n(n - 2)^2(2n^3 - 12n^2 + 23n - 10)/12 if n is even and (n - 1)(n - 3)(2n^4 - 12n^3 + 25n^2 - 14n + 1)/12 if n is odd (Landau, 1896).
a(n) = 5a(n - 1) - 8a(n - 2) + 14a(n - 4) - 14a(n - 5) + 8a(n - 7) - 5a(n - 8) + a(n - 9) for n >= 9.
G.f.: 4(9*x^4 + 35*x^3 + 49*x^2 + 21*x + 6)*x^4/((1 - x)^7*(1 + x)^2).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=24, a(5)=204, a(6)=1024, a(7)=3628, a(8)=10320, a(n) = 5*a(n-1)-8*a(n-2)+14*a(n-4)-14*a(n-5)+8*a(n-7)- 5*a(n-8)+ a(n-9). - Harvey P. Dale, Nov 06 2011
a(n) = n^6/6 - 5*n^5/3 + 79*n^4/12 - 25*n^3/2 + 11*n^2 - 43*n/12 + 1/8 + (-1)^n*(n/4 - 1/8) [Chaiken et al.]. - N. J. A. Sloane, Feb 16 2013
a(n) = (3*(2*n-1)*(-1)^n +4*n^6 -40*n^5 +158*n^4 -300*n^3 +264*n^2 -86*n +3)/24. - Antal Pinter, Oct 03 2014
E.g.f.: (exp(2*x)*(3 - 6*x^2 + 8*x^3 + 18*x^4 + 20*x^5 + 4*x^6) -3 - 6*x) / (24*exp(x)). - Vaclav Kotesovec, Feb 15 2015
For n>3, a(n) = A179058(n) -4*(n-2)*A000914(n-2) -2*(n-2)*A002415(n-1) + 2*A008911(n-1) +8*(A001752(n-4) +A007009(n-3)). - Antal Pinter, Sep 20 2015
In general, for m <= n, n >= 3, the number of ways to place 3 nonattacking queens on an m X n board is n^3/6*(m^3 - 3*m^2 + 2*m) - n^2/2*(3*m^3 - 9*m^2 + 6*m) + n/6*(2*m^4 + 20*m^3 - 77*m^2 + 58*m) - 1/24*(39*m^4 - 82*m^3 - 36*m^2 + 88*m) + 1/16*(2*m - 4*n + 1)*(1 + (-1)^(m+1)) + 1/2*(1 + abs(n - 2*m + 3) - abs(n - 2*m + 4))*(1/24*((n - 2*m + 11)^4 - 42*(n - 2*m + 11)^3 + 656*(n - 2*m + 11)^2 - 4518*(n - 2*m + 11) + 11583) - 1/16*(4*m - 2*n - 1)*(1 + (-1)^(n+1))) [Panos Louridas, idee & form 93/2007, pp. 2936-2938]. - Vaclav Kotesovec, Feb 20 2016

Extensions

The formula given in the Rivin et al. paper is wrong.
Entry improved by comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 30 2001

A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0 < k < n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 2, 0, 1, 1, 3, 4, 2, 1, -1, 1, 4, 7, 6, 3, 0, 1, 1, 5, 11, 13, 9, 3, 1, -1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, -1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, -1, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0, 1, 1, 11, 56, 174, 367
Offset: 0

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Sum_{k=0..n} T(n,k) = A078008(n);
Sum_{k=0..n} abs(T(n,k)) = A052953(n-1) for n > 0;
T(n,1) = n - 2 for n > 1;
T(n,2) = A000124(n-3) for n > 2;
T(n,3) = A003600(n-4) for n > 4;
T(n,n-6) = A001753(n-6) for n > 6;
T(n,n-5) = A001752(n-5) for n > 5;
T(n,n-4) = A002623(n-4) for n > 4;
T(n,n-3) = A002620(n-1) for n > 3;
T(n,n-2) = A008619(n-2) for n > 2;
T(n,n-1) = n mod 2 for n > 0;
T(2*n,n) = A072547(n+1).
Sum_{k=0..n} T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - Philippe Deléham, Nov 17 2013, Nov 19 2013
(1,a^n) Pascal triangle with a = -1. - Philippe Deléham, Dec 27 2013
T(n,k) = A112465(n,n-k). - Reinhard Zumkeller, Jan 03 2014

Examples

			From _Philippe Deléham_, Nov 17 2013: (Start)
Triangle begins:
  1;
  1, -1;
  1,  0,  1;
  1,  1,  1, -1;
  1,  2,  2,  0,  1;
  1,  3,  4,  2,  1, -1;
  1,  4,  7,  6,  3,  0,  1; (End)
		

Crossrefs

Cf. A007318 (a=1), A008949(a=2), A164844(a=10).
Similar to the triangles A035317, A059259, A080242, A112555.
Cf. A072547 (central terms).

Programs

  • GAP
    Flat(List([0..13],n->List([0..n],k->Sum([0..k],i->Binomial(n,i)*(-2)^(k-i))))); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a108561 n k = a108561_tabl !! n !! k
    a108561_row n = a108561_tabl !! n
    a108561_tabl = map reverse a112465_tabl
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Maple
    A108561 := (n, k) -> add(binomial(n, i)*(-2)^(k-i), i = 0..k):
    seq(seq(A108561(n,k), k = 0..n), n = 0..12); # Peter Bala, Feb 18 2018
  • Mathematica
    Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • Sage
    def A108561_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]
    for n in (1..12): print(A108561_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: (1-y*x)/(1-x-(y+y^2)*x). - Philippe Deléham, Nov 17 2013
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 17 2013
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..k} binomial(n,i)*(-2)^(k-i), 0 <= k <= n.
The n-th row polynomial is the n-th degree Taylor polynomial of the rational function (1 + x)^n/(1 + 2*x) about 0. For example, for n = 4, (1 + x)^4/(1 + 2*x) = 1 + 2*x + 2*x^2 + x^4 + O(x^5). (End)

Extensions

Definition corrected by Philippe Deléham, Dec 26 2013

A002624 Expansion of (1-x)^(-3) * (1-x^2)^(-2).

Original entry on oeis.org

1, 3, 8, 16, 30, 50, 80, 120, 175, 245, 336, 448, 588, 756, 960, 1200, 1485, 1815, 2200, 2640, 3146, 3718, 4368, 5096, 5915, 6825, 7840, 8960, 10200, 11560, 13056, 14688, 16473, 18411, 20520, 22800, 25270, 27930, 30800, 33880, 37191, 40733, 44528
Offset: 0

Keywords

Comments

Given an irregular triangular matrix M with the triangular numbers in every column shifted down twice for columns >0, A002624 = M * [1, 2, 3, ...]. Example: row 4 of triangle M = (15, 6, 1), then (15, 6, 1) dot (1, 2, 3) = a(4) = 30 = (15 + 12 + 3). - Gary W. Adamson, Mar 02 2010
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums of A139600 are related to the sequence given above, e.g., Ze2(n) = a(n-1) - a(n-2) - a(n-3) + 4*a(n-4), with a(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011
8*a(n) + 16*a(n+1) + 16*a(n+2) is the number of ways to place 3 queens on an (n+6) X (n+6) chessboard so that they diagonally attack each other exactly twice. Also true for the nonexistent terms for n=-1, n=-2 and n=-3 assuming that they are zeros. In graph-theory representation they thus form the corresponding open walk (Eulerian trail) with V={1,2,3} vertices and length of 2. - Antal Pinter, Dec 31 2015
a(n) is the number of partitions of n into parts with three kinds of 1 and two kinds of 2. - Joerg Arndt, Jan 18 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [( (n+1)^4 +10*(n+1)^3 +32*(n+1)^2 +32*(n+1) +(6*(n+1) +15)*((n+1) mod 2) )/96 : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A002624:=-1/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Block[{m = n - 1}, (m^4 + 10m^3 + 32m^2 + 32m + (6m + 15)Mod[m, 2])/96]; Table[ f[n], {n, 2, 45}]
    (* Or *) CoefficientList[ Series[1/((1 - x)^3 (1 - x^2)^2), {x, 0, 44}], x] (* Robert G. Wilson v, Feb 26 2005 *)
  • PARI
    Vec(1/(1-x)^3/(1-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Apr 19 2012
    
  • PARI
    a(n)=(n^4 + 14*n^3 + 68*n^2 + 136*n - n%2*(6*n + 21))/96 + 1 \\ Charles R Greathouse IV, Feb 18 2016

Formula

a(n-1) = ( n^4 +10*n^3 +32*n^2 +32*n +(6*n +15)*(n mod 2) )/96.
From Antal Pinter, Oct 03 2014: (Start)
a(n) = C(n + 2, 2) + 2*C(n, 2) + 3*C(n - 2, 2) + 4*C(n - 4, 2) + ...
a(n) = Sum_{i = 1..z} i*C(n + 4 - 2i, 2) where z = (2*n + 3 + (-1)^n)/4.
a(n) = (3*(2*n + 7)*(-1)^n + 2*n^4 + 28*n^3 + 136*n^2 + 266*n + 171)/192.
(End)
a(n) = A007009(n+1) - A001752(n-1) for n>0. - Antal Pinter, Dec 27 2015
a(n) = Sum_{j=0..n+1} A006918(j). - Richard Turk, Feb 18 2016

Extensions

Formula and more terms from Frank Ellermann, Mar 14 2002

A001753 Expansion of 1/((1+x)*(1-x)^6).

Original entry on oeis.org

1, 5, 16, 40, 86, 166, 296, 496, 791, 1211, 1792, 2576, 3612, 4956, 6672, 8832, 11517, 14817, 18832, 23672, 29458, 36322, 44408, 53872, 64883, 77623, 92288, 109088, 128248, 150008, 174624, 202368, 233529
Offset: 0

Keywords

Comments

Number of symmetric nonnegative integer 5 X 5 matrices with sum of elements equal to 4*n under action of dihedral group D_4.
a(n) = A108561(n+6,n) for n>0. - Reinhard Zumkeller, Jun 10 2005

Examples

			There are 5 symmetric nonnegative integer 5 X 5 matrices with sum of elements equal to 4 under action of D_4:
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[0 0 0 0 0] [1 0 0 0 1] [0 0 0 0 0] [0 1 0 1 0] [0 0 4 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0].
		

Crossrefs

Cf. A000217, A002620, A008804, A038163, A054343, A001769 (partial sums), A001752 (first differences), A169793 (binomial transf).

Programs

  • Magma
    [(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n+945)/960+(-1)^n/64: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-x)^6), {x, 0, 50}], x] (* G. C. Greubel, Nov 22 2017 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,5,16,40,86,166,296},40] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    a(n)=(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n)\/960+1 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = Sum{k=0..n} (-1)^(n-k)*binomial(k+5, 5); a(n) = (4*n^5 + 70*n^4 + 460*n^3 + 1400*n^2 + 1936*n + 945)/960 + (-1)^n/64. - Paul Barry, Jul 01 2003
a(n) = a(n-2) + (n*(n + 1)*(n + 2)*(n - 1))/24, a(1) = 0, a(2) = 1; (15*(-1)^n - 15*(-1)^(2*n) + 96*n - 160*(-1)^(2*n)*n + 200*n^2 - 200*(-1)^(2*n)*n^2 + 140*n^3 - 80*(-1)^(2*n)*n^3 + 40*n^4 - 10*(-1)^(2*n)*n^4 + 4*n^5)/960. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
a(n) + a(n+1) = A000389(n+6). - R. J. Mathar, Mar 14 2011

Extensions

Comment and example from Vladeta Jovovic, May 14 2000

A158454 Riordan array (1/(1-x^2), x/(1+x)^2).

Original entry on oeis.org

1, 0, 1, 1, -2, 1, 0, 4, -4, 1, 1, -6, 11, -6, 1, 0, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 0, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 0, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1
Offset: 0

Author

Paul Barry, Mar 19 2009

Keywords

Comments

Coefficient table of the square of Chebyshev S-polynomials. For the S-polynomials see A049310, and for a proof see the array A181878, where the odd numbered rows are shifted by one to the left. - Wolfdieter Lang, Dec 15 2010
Image of the Catalan numbers A000108 by this matrix is the all 1's sequence.
Image of the central binomial numbers A000984 by this matrix is the counting numbers A000027.
Inverse array is the Riordan array (1-x^2*c(x)^4, xc(x)^2), where c(x) is the g.f. of A000108.
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k belong to the class of Boas-Buck polynomials. Hence they satisfy the Boas-Buck identity: (E_x - n*1)*R(n, x) = -Sum_{p=0..n-1} ((1 - (-1)^p)*1 + 2*(-1)^(p+1)*E_x) R(n-1-p, x) for n >= 0. See the Boas-Buck comments and references in A046521. The ensuing recurrence for the column sequences is given in the formula section. - Wolfdieter Lang, Aug 10 2017

Examples

			The triangle T(n,k) begins:
  n\k  0   1    2     3     4      5     6     7    8    9  10...
  0:   1
  1:   0   1
  2:   1  -2    1
  3:   0   4   -4     1
  4:   1  -6   11    -6     1
  5:   0   9  -24    22    -8      1
  6:   1 -12   46   -62    37    -10     1
  7:   0  16  -80   148  -128     56   -12     1
  8:   1 -20  130  -314   367   -230    79   -14    1
  9:   0  25 -200   610  -920    771  -376   106  -16    1
  10:  1 -30  295 -1106  2083  -2232  1444  -574  137  -18   1
  ... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012
Recurrences (from A- and Z-sequences):
  1 = T(6,0) = 0*0 + 1*9 +2*(-24) + 5*22 + 14*(-8)+ 42*1.
-80 = T(7,2) = 1*(-12) -2*(46) -1*(-62) -2*37 -5*(-10) -14*1. - _Wolfdieter Lang_, Dec 20 2010
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Crossrefs

From Wolfdieter Lang, Aug 10 2017: (Start)
Row sums A011655(n+1), alternating row sums A007598(n+1)*(-1)^(n+1).
Column sequences k=0..5: A059841, A002620(n+2)*(-1)^(n), A001752(n)*(-1)^n, A001769(n)*(-1)^n, A001780(n)*(-1)^n, A001786(n)*(-1)^n. (End)

Programs

  • GAP
    T:=Flat(List([0..10], n->List([0..n], k->Sum([0..n], j-> (-1)^(j-k)*Binomial(k+j, 2*k))))); # G. C. Greubel, Dec 15 2018
  • Magma
    [[(&+[(-1)^(j-k)*Binomial(k+j, 2*k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Dec 15 2018
    
  • Maple
    A158454 := proc(n,k) (-1)^(n+k)*add(binomial(n+k-1-2*j,2*k-1),j=0..floor(n/2)) ; end proc;
    seq(seq(A158454(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Dec 17 2010
  • Mathematica
    nmax = 10; t[n_, k_] := (-1)^(n+k)* Sum[Binomial[n+k-1-2*j, 2*k-1], {j, 0, Floor[n/2]}]; t[n_?EvenQ, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
    With[{m = 15}, CoefficientList[CoefficientList[Series[(1+x)/((1-x)*(1 + x)^2 -t*x*(1-x)), {x, 0, m}, {t, 0, m}], x], t]]//Flatten (* G. C. Greubel, Dec 15 2018 *)
    T[n_, 0] := Boole[EvenQ[n]]; T[n_, k_] := (-1)^(n - k) Binomial[k+n-1, 2*k-1] HypergeometricPFQ[{1, (k - n)/2, (1 + k - n)/2}, {(1 - k - n)/2, (2 - k - n)/2}, 1]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm  (* Peter Luschny, Aug 20 2022 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(j-k)*binomial(k+j, 2*k))};
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2018
    
  • Sage
    [[sum((-1)^(j-k)*binomial(k+j, 2*k) for j in range(n+1)) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Dec 15 2018
    

Formula

Number triangle T(n, k) = Sum_{j=0..n} (-1)^(j-k)*binomial(k+j, 2*k) = Sum_{j=0..n-k} (-1)^(n-k-j)*binomial(n+k-j, 2*k).
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1-x^2))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
T(n, k) = (-1)^(n-k)*Sum_{j=0..floor(n/2)} binomial(n+k-1-2*j, 2*k-1), 0 <= k <= n, else 0. From the o.g.f. for column k after convolution. - Wolfdieter Lang, Dec 17 2010
O.g.f. row polynomials (rising powers in y): ((1+x)/(1-x))/(1+(2-y)*x+x^2) = Sum_{n>=0} S(n,sqrt(y))^2*x^n, with Chebyshev S-polynomials from A049310. - Wolfdieter Lang, Dec 15 2010
Recurrences from the A- and Z-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), n >= 1.
T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), n >= k >= 1.
Here Z(0)=0 and Z(j) = A000108(j), j >= 1, (o.g.f. -1 + c(x), with the Catalan o.g.f. c(x)), and A(j) = A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0, with o.g.f. 1/c(x)^2. - Wolfdieter Lang, Dec 20 2010
T(n, k) = Sum_{m=0..n} A129818(m, k), 0 <= k <= n. - Wolfdieter Lang, Dec 15 2010
Boas-Buck recurrence for column k: R(n, k) = (1/(n-k))*Sum_{p=k..n-1}((-1)^(n-p)*(2*k+1) + 1) * R(p, k), for n > k >= 0, with input R(k, k) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
G.f.: (1 + x)/((1 - x)*(1 + x)^2 - t*x*(1 - x)). - G. C. Greubel, Dec 15 2018
T(n, k) = (-1)^(n - k)*binomial(k + n - 1, 2*k-1)*hypergeom([1, (k - n)/2, (1 + k - n)/2], [(1 - k - n)/2, (2 - k - n)/2], 1) for k >= 1 . - Peter Luschny, Aug 20 2022

A001769 Expansion of 1/((1+x)*(1-x)^7).

Original entry on oeis.org

1, 6, 22, 62, 148, 314, 610, 1106, 1897, 3108, 4900, 7476, 11088, 16044, 22716, 31548, 43065, 57882, 76714, 100386, 129844, 166166, 210574, 264446, 329329, 406952, 499240, 608328, 736576, 886584, 1061208, 1263576, 1497105, 1765518, 2072862, 2423526, 2822260, 3274194, 3784858
Offset: 0

Keywords

Crossrefs

Cf. A002620, A002623, A001752, A001753 (first differences), A158454 (signed column k=3), A001779 (partial sums), A169794 (binomial transf.).

Programs

  • Magma
    [(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n+5715)/5760+(-1)^n/128: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1-x)^7),{x,0,30}],x] (* or *) LinearRecurrence[ {6,-14,14,0,-14,14,-6,1},{1,6,22,62,148,314,610,1106},40] (* Harvey P. Dale, May 24 2015 *)
  • PARI
    a(n)=(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n)\/5760+1 \\ Charles R Greathouse IV, Apr 17 2012

Formula

From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+6, 6).
a(n) = (4*n^6 +96*n^5 +910*n^4 +4320*n^3 +10696*n^2 +12864*n+5715)/5760+(-1)^n/128. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (7 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 3 with offset 0).
a(n)+a(n+1) = A000579(n+7). - R. J. Mathar, Jan 06 2021

A212964 Number of (w,x,y) with all terms in {0,...,n} and |w-x| < |x-y| < |y-w|.

Original entry on oeis.org

0, 0, 0, 2, 6, 14, 26, 44, 68, 100, 140, 190, 250, 322, 406, 504, 616, 744, 888, 1050, 1230, 1430, 1650, 1892, 2156, 2444, 2756, 3094, 3458, 3850, 4270, 4720, 5200, 5712, 6256, 6834, 7446, 8094, 8778, 9500, 10260, 11060, 11900, 12782, 13706
Offset: 0

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Magic numbers of nucleons in a biaxially deformed nucleus at oscillator ratio 1:2 (oblate ellipsoid) under the simple harmonic oscillator model. - Jess Tauber, May 14 2013
a(n) is the number of Sidon subsets of {1,...,n+1} of size 3. - Carl Najafi, Apr 27 2014

Crossrefs

First differences: A007590, is first differences of 2*A001752(n-4) for n > 3; partial sums: 2*A001752(n-3) for n > 2, is partial sums of A007590(n-1) for n > 0. - Guenther Schrack, Mar 19 2018

Programs

  • Magma
    [(2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Jul 25 2014
    
  • Maple
    A212964:=n->add(floor(i^2/2) - 2*floor(i/2), i=1..n): seq(A212964(n), n=0..50); # Wesley Ivan Hurt, Jul 23 2014
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] < Abs[x - y] < Abs[y - w], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 45]]   (* A212964 *)
    m/2 (* essentially A002623 *)
    CoefficientList[Series[2 x^3/((1 + x) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 25 2014 *)
  • PARI
    a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8;
    vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015

Formula

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: f(x)/g(x), where f(x)=2*x^3 and g(x)=(1+x)(1-x)^4.
a(n+3) = 2*A002623(n).
a(n) = Sum_{k=0..n} floor((k-1)^2/2). - Enrique Pérez Herrero, Dec 28 2013
a(n) = Sum_{i=1..n} floor(i^2/2) - 2*floor(i/2). - Wesley Ivan Hurt, Jul 23 2014
a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8. - Robert Israel, Jul 23 2014
E.g.f.: (x*(2*x^2 + 3*x - 3)*cosh(x) + (2*x^3 + 3*x^2 - 3*x + 3)*sinh(x))/12. - Stefano Spezia, Jul 06 2021
Showing 1-10 of 35 results. Next