cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001752 Expansion of 1/((1+x)*(1-x)^5).

Original entry on oeis.org

1, 4, 11, 24, 46, 80, 130, 200, 295, 420, 581, 784, 1036, 1344, 1716, 2160, 2685, 3300, 4015, 4840, 5786, 6864, 8086, 9464, 11011, 12740, 14665, 16800, 19160, 21760, 24616, 27744, 31161, 34884, 38931, 43320, 48070, 53200, 58730, 64680, 71071, 77924, 85261
Offset: 0

Views

Author

Keywords

Comments

Define a unit column of a binary matrix to be a column with only one 1. a(n) = number of 3 X n binary matrices with 1 unit column up to row and column permutations (if offset is 1). - Vladeta Jovovic, Sep 09 2000
Generally, number of 3 X n binary matrices with k=0,1,2,... unit columns, up to row and column permutations, is the coefficient of x^k in 1/6*(Z(S_n; 5 + 3*x,5 + 3*x^2, ...) + 3*Z(S_n; 3 + x,5 + 3*x^2,3 + x^3,5 + 3*x^4, ...) + 2*Z(S_n; 2,2,5 + 3*x^3,2,2,5 + 3*x^6, ...)), where Z(S_n; x_1,x_2,...,x_n) is the cycle index of symmetric group S_n of degree n.
First differences of a(n) give number of minimal 3-covers of an unlabeled n-set that cover 4 points of that set uniquely (if offset is 4).
Transform of tetrahedral numbers, binomial(n+3,3), under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
Equals triangle A152205 as an infinite lower triangular matrix * [1, 2, 3, ...]. - Gary W. Adamson, Feb 14 2010
With a leading zero, number of all possible octahedra of any size, formed when intersecting a regular tetrahedron by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Sep 13 2012
With 2 leading zeros and offset 1, the sequence becomes 0,0,1,4,11,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q) with p <= q. Then b(n) is the total volume of the family of rectangular prisms with dimensions p, |q - p| and |q - p|. - Wesley Ivan Hurt, Apr 14 2018
Conjecture: For n > 2, a(n-3) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of an n X n square matrix M(n) defined as the n-th principal submatrix of the array A010751 whose general element is given by M[i,j] = floor((j - i + 1)/2). - Stefano Spezia, Jan 12 2022
Consider the following drawing of the complete graph on n vertices K_n: Vertices 1, 2, ..., n are on a straight line. Any pair of nonconsecutive vertices (i, j) with i < j is connected by a semicircle that goes above the line if i is odd, and below if i is even. With four leading zeros and offset 1, a(n) gives the number of edge crossings of the aforementioned drawing of K_n. - Carlo Francisco E. Adajar, Mar 17 2022

Examples

			There are 4 binary 3 X 2 matrices with 1 unit column up to row and column permutations:
  [0 0] [0 0] [0 1] [0 1]
  [0 0] [0 1] [0 1] [0 1]
  [0 1] [1 1] [1 0] [1 1].
For n=5, the numbers of the octahedra, starting from the smallest size, are Te(5)=35, Te(3)=10, and Te(1)=1, the sum being 46. Te denotes the tetrahedral number A000292. - _V.J. Pohjola_, Sep 13 2012
		

References

  • T. A. Saaty, The Minimum Number of Intersections in Complete Graphs, Proc. Natl. Acad. Sci. USA., 52 (1964), 688-690.

Crossrefs

Cf. A001753 (partial sums), A002623 (first differences), A158454 (signed column k=2), A169792 (binomial transform).

Programs

  • Magma
    [Floor(((n+3)^2-1)*((n+3)^2-3)/48): n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    A001752:=n->(3*(-1)^n+93+168*n+100*n^2+24*n^3+2*n^4)/96:
    seq(A001752(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2015
  • Mathematica
    a = {1, 4}; Do[AppendTo[a, a[[n - 2]] + (n*(n + 1)*(n + 2))/6], {n, 3, 10}]; a
    (* Number of octahedra *) nnn = 100; Teo[n_] := (n - 1) n (n + 1)/6
    Table[Sum[Teo[n - nn], {nn, 0, n - 1, 2}], {n, 1, nnn}]
    (* V.J. Pohjola, Sep 13 2012 *)
    LinearRecurrence[{4,-5,0,5,-4,1},{1,4,11,24,46,80},50] (* Harvey P. Dale, Feb 07 2019 *)
  • PARI
    a(n)=if(n<0,0,((n+3)^2-1)*((n+3)^2-3)/48-if(n%2,1/16))
    
  • PARI
    a(n)=(n^4+12*n^3+50*n^2+84*n+46)\/48 \\ Charles R Greathouse IV, Sep 13 2012
    

Formula

a(n) = floor(((n+3)^2 - 1)*((n+3)^2 - 3)/48).
G.f.: 1/((1+x)*(1-x)^5).
a(n) - 2*a(n-1) + a(n-2) = A002620(n+2).
a(n) + a(n-1) = A000332(n+4).
a(n) - a(n-2) = A000292(n+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+4, 4). - Paul Barry, Jul 01 2003
a(n) = (3*(-1)^n + 93 + 168*n + 100*n^2 + 24*n^3 + 2*n^4)/96. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n-2k+3, 3).
a(n) = Sum_{k=0..n} binomial(k+3, 3)*(1-(-1)^(n+k-1))/2. (End)
a(n) = A108561(n+5,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
From Wesley Ivan Hurt, Apr 01 2015: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*(n-4) - 4*a(n-5) + a(n-6).
a(n) = Sum_{i=0..n+3} (n+3-i) * floor(i^2/2)/2. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (5 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A158454 (here for the unsigned column k = 2 with offset 0). - Wolfdieter Lang, Aug 10 2017
Convolution of A000217 and A004526. - R. J. Mathar, Mar 29 2018
E.g.f.: ((48 + 147*x + 93*x^2 + 18*x^3 + x^4)*cosh(x) + (45 + 147*x + 93*x^2 + 18*x^3 + x^4)*sinh(x))/48. - Stefano Spezia, Jan 12 2022

Extensions

Formulae corrected by Bruno Berselli, Sep 13 2012

A059260 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Coefficients of the (left, normalized) shifted cyclotomic polynomial. Or, coefficients of the basic n-th q-series for q=-2. Indeed, let Y_n(x) = Sum_{k=0..n} x^k, having as roots all the n-th roots of unity except for 0; then coefficients in x of (-1)^n Y_n(-x-1) give exactly the n-th row of A059260 and a practical way to compute it. - Olivier Gérard, Jul 30 2002
The maximum in the (2n)-th row is T(n,n), which is A026641; also T(n,n) ~ (2/3)*binomial(2n,n). The maximum in the (2n-1)-th row is T(n-1,n), which is A014300 (but T does not have the same definition as in A026637); also T(n-1,n) ~ (1/3)*binomial(2n,n). Here is a generalization of the formula given in A026641: T(i,j) = Sum_{k=0..j} binomial(i+k-x,j-k)*binomial(j-k+x,k) for all x real (the proof is easy by induction on i+j using T(i,j) = T(i-1,j) + T(i,j-1)). - Claude Morin, May 21 2002
The second greatest term in the (2n)-th row is T(n-1,n+1), which is A014301; the second greatest term in the (2n+1)-th row is T(n+1,n) = 2*T(n-1,n+1), which is 2*A014301. - Claude Morin
Diagonal sums give A008346. - Paul Barry, Sep 23 2004
Riordan array (1/(1-x^2), x/(1-x)). As a product of Riordan arrays, factors into the product of (1/(1+x),x) and (1/(1-x),1/(1-x)) (binomial matrix). - Paul Barry, Oct 25 2004
Signed version is A239473 with relations to partial sums of sequences. - Tom Copeland, Mar 24 2014
From Robert Coquereaux, Oct 01 2014: (Start)
Columns of the triangle (cf. Example below) give alternate partial sums along nw-se diagonals of the Pascal triangle, i.e., sequences A000035, A004526, A002620 (or A087811), A002623 (or A173196), A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808, etc.
The dimension of the space of closed currents (distributional forms) of degree p on Gr(n), the Grassmann algebra with n generators, equivalently, the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence, is V(n,p) = 2^n T(p,n-1) - (-1)^p.
If p is odd V(n,p) is also the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n).
If p is even the dimension of this cohomology group is V(n,p)+1.
Cf. A193844. (End)
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = x, R(3,x) = 1 + x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)
From Miquel A. Fiol, Oct 04 2024: (Start)
For j>=1, T(i,j) is the independence number of the (i-j)-supertoken graph FF_(i-j)(S_j) of the star graph S_j with j points.
(Given a graph G on n vertices and an integer k>=1, the k-supertoken (or reduced k-th power) FF_k(G) of G has vertices representing configurations of k indistinguishable tokens in the (not necessarily different) vertices of G, with two configurations being adjacent if one can be obtained from the other by moving one token along an edge. See an example below.)
Following the suggestion of Peter Munn, the k-supertoken graph FF_k(S_j) can also be defined as follows: Consider the Lattice graph L(k,j), whose vertices are the k^j j-vectors with elements in the set {0,..,k-1}, two being adjacent if they differ in just one coordinate by one unity. Then, FF_k(S_j) is the subgraph of L(k+1,j) induced by the vertices at distance at most k from (0,..,0). (End)

Examples

			Triangle begins
  1;
  0,  1;
  1,  1,  1;
  0,  2,  2,  1;
  1,  2,  4,  3,  1;
  0,  3,  6,  7,  4,  1;
  1,  3,  9, 13, 11,  5,  1;
  0,  4, 12, 22, 24, 16,  6,  1;
  1,  4, 16, 34, 46, 40, 22,  7,  1;
  0,  5, 20, 50, 80, 86, 62, 29,  8,  1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007  A000012  A000027  A025747  A000292* A000332* A000389*
A059841  A008619  A087811* A002623  A001752  A001753  A001769
A193356  A008794* A005993  A005994  -------  -------  -------
-------  -------  -------  A005995  A018210  -------  A052267
-------  -------  -------  -------  A018211  A018212  -------
-------  -------  -------  -------  -------  A018213  A018214
-------  -------  -------  -------  -------  -------  A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
     22--12---24---14---44
          | \    / |
         23   11   34
            \  |  /
              13
               |
              33
		

Crossrefs

Cf. A059259. Row sums give A001045.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808 etc. (allowing for signs). A058393 would then effectively provide the table for nonpositive n. - Henry Bottomley, Jun 25 2001

Programs

  • Maple
    read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
  • Mathematica
    t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
  • PARI
    T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
    for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
    for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
  • Sage
    def A059260_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
    for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: 1/(1-y-x*y-x^2) = 1 + y + x^2 + xy + y^2 + 2x^2y + 2xy^2 + y^3 + ...
E.g.f: (exp(-t)+(x+1)*exp((x+1)*t))/(x+2). - Tom Copeland, Mar 19 2014
O.g.f. (n-th row): ((-1)^n+(x+1)^(n+1))/(x+2). - Tom Copeland, Mar 19 2014
T(i, 0) = 1 if i is even or 0 if i is odd, T(0, i) = 1 and otherwise T(i, j) = T(i-1, j) + T(i, j-1); also T(i, j) = Sum_{m=j..i+j} (-1)^(i+j+m)*binomial(m, j). - Robert FERREOL, May 17 2002
T(i, j) ~ (i+j)/(2*i+j)*binomial(i+j, j); more precisely, abs(T(i, j)/binomial(i+j, j) - (i+j)/(2*i+j) )<=1/(4*(i+j)-2); the proof is by induction on i+j using the formula 2*T(i, j) = binomial(i+j, j)+T(i, j-1). - Claude Morin, May 21 2002
T(n, k) = Sum_{j=0..n} (-1)^(n-j)binomial(j, k). - Paul Barry, Aug 25 2004
T(n, k) = Sum_{j=0..n-k} binomial(n-j, j)*binomial(j, n-k-j). - Paul Barry, Jul 25 2005
Equals A097807 * A007318. - Gary W. Adamson, Feb 21 2007
Equals A128173 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Feb 17 2007
Equals A130595*A097805*A007318 = (inverse Pascal matrix)*(padded Pascal matrix)*(Pascal matrix) = A130595*A200139. Inverse is A097808 = A130595*(padded A130595)*A007318. - Tom Copeland, Nov 14 2016
T(i, j) = binomial(i+j, j)-T(i-1, j). - Laszlo Major, Apr 11 2017
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = x*R(n-1,x) + (x + 1)*R(n-2,x) with R(1,x) = 1 and R(2,x) = x. - Peter Bala, Feb 07 2024
From Miquel A. Fiol, Sep 30 2024: (Start)
The triangle can be seen as a slice of a 3-dimensional table that links it to well-known sequences as follows.
The j-th column of the triangle, T(i,j) for i >= j, equals A(n,c1,c2) = Sum_{k=0..floor(n/2)} binomial(c1+2*k-1,2*k)*binomial(c2+n-2*k-1,n-2*k) when c1=1, c2=j, and n=i-j.
This gives T(i,j) = Sum_{k=0..floor((i-j)/2)} binomial(i-2*k-1, j-1). For other values of (c1,c2), see the example below. (End)

Extensions

Formula corrected by Philippe Deléham, Jan 11 2014

A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0 < k < n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 2, 0, 1, 1, 3, 4, 2, 1, -1, 1, 4, 7, 6, 3, 0, 1, 1, 5, 11, 13, 9, 3, 1, -1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, -1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, -1, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0, 1, 1, 11, 56, 174, 367
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Sum_{k=0..n} T(n,k) = A078008(n);
Sum_{k=0..n} abs(T(n,k)) = A052953(n-1) for n > 0;
T(n,1) = n - 2 for n > 1;
T(n,2) = A000124(n-3) for n > 2;
T(n,3) = A003600(n-4) for n > 4;
T(n,n-6) = A001753(n-6) for n > 6;
T(n,n-5) = A001752(n-5) for n > 5;
T(n,n-4) = A002623(n-4) for n > 4;
T(n,n-3) = A002620(n-1) for n > 3;
T(n,n-2) = A008619(n-2) for n > 2;
T(n,n-1) = n mod 2 for n > 0;
T(2*n,n) = A072547(n+1).
Sum_{k=0..n} T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - Philippe Deléham, Nov 17 2013, Nov 19 2013
(1,a^n) Pascal triangle with a = -1. - Philippe Deléham, Dec 27 2013
T(n,k) = A112465(n,n-k). - Reinhard Zumkeller, Jan 03 2014

Examples

			From _Philippe Deléham_, Nov 17 2013: (Start)
Triangle begins:
  1;
  1, -1;
  1,  0,  1;
  1,  1,  1, -1;
  1,  2,  2,  0,  1;
  1,  3,  4,  2,  1, -1;
  1,  4,  7,  6,  3,  0,  1; (End)
		

Crossrefs

Cf. A007318 (a=1), A008949(a=2), A164844(a=10).
Similar to the triangles A035317, A059259, A080242, A112555.
Cf. A072547 (central terms).

Programs

  • GAP
    Flat(List([0..13],n->List([0..n],k->Sum([0..k],i->Binomial(n,i)*(-2)^(k-i))))); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a108561 n k = a108561_tabl !! n !! k
    a108561_row n = a108561_tabl !! n
    a108561_tabl = map reverse a112465_tabl
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Maple
    A108561 := (n, k) -> add(binomial(n, i)*(-2)^(k-i), i = 0..k):
    seq(seq(A108561(n,k), k = 0..n), n = 0..12); # Peter Bala, Feb 18 2018
  • Mathematica
    Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • Sage
    def A108561_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]
    for n in (1..12): print(A108561_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: (1-y*x)/(1-x-(y+y^2)*x). - Philippe Deléham, Nov 17 2013
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 17 2013
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..k} binomial(n,i)*(-2)^(k-i), 0 <= k <= n.
The n-th row polynomial is the n-th degree Taylor polynomial of the rational function (1 + x)^n/(1 + 2*x) about 0. For example, for n = 4, (1 + x)^4/(1 + 2*x) = 1 + 2*x + 2*x^2 + x^4 + O(x^5). (End)

Extensions

Definition corrected by Philippe Deléham, Dec 26 2013

A038163 G.f.: 1/((1-x)*(1-x^2))^3.

Original entry on oeis.org

1, 3, 9, 19, 39, 69, 119, 189, 294, 434, 630, 882, 1218, 1638, 2178, 2838, 3663, 4653, 5863, 7293, 9009, 11011, 13377, 16107, 19292, 22932, 27132, 31892, 37332, 43452, 50388, 58140, 66861, 76551, 87381, 99351, 112651, 127281
Offset: 0

Views

Author

Keywords

Comments

Number of symmetric nonnegative integer 6 X 6 matrices with sum of elements equal to 4*n, under action of dihedral group D_4. - Vladeta Jovovic, May 14 2000
Equals the triangular sequence convolved with the aerated triangular sequence, [1, 0, 3, 0, 6, 0, 10, ...]. - Gary W. Adamson, Jun 11 2009
Number of partitions of n (n>=1) into 1s and 2s if there are three kinds of 1s and three kinds of 2s. Example: a(2)=9 because we have 11, 11', 11", 1'1', 1'1", 1"1", 2, 2', and 2". - Emeric Deutsch, Jun 26 2009
Equals the tetrahedral numbers with repeats convolved with the natural numbers: (1 + x + 4x^2 + 4x^3 + ...) * (1 + 2x + 3x^2 + 4x^3 + ...) = (1 + 3x + 9x^2 + 19x^3 + ...). - Gary W. Adamson, Dec 22 2010

Crossrefs

Cf. A096338.
Column k=3 of A210391. - Alois P. Heinz, Mar 22 2012
Cf. A000217.

Programs

  • Haskell
    import Data.List (inits, intersperse)
    a038163 n = a038163_list !! n
    a038163_list = map
        (sum . zipWith (*) (intersperse 0 $ tail a000217_list) . reverse) $
        tail $ inits $ tail a000217_list where
    -- Reinhard Zumkeller, Feb 27 2015
  • Maple
    G := 1/((1-x)^3*(1-x^2)^3): Gser := series(G, x = 0, 42): seq(coeff(Gser, x, n), n = 0 .. 37); # Emeric Deutsch, Jun 26 2009
    # alternative
    A038163 := proc(n)
        (4*n^5+90*n^4+760*n^3+2970*n^2+5266*n+3285+(-1)^n*(30*n^2+270*n+555))/3840 ;
    end proc:
    seq(A038163(n),n=0..30) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^2))^3, {x, 0, 40}], x] (* Jean-François Alcover, Mar 11 2014 *)
    LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1},{1,3,9,19,39,69,119,189,294},50] (* Harvey P. Dale, Nov 24 2022 *)

Formula

a(2*k) = (4*k + 5)*binomial(k + 4, 4)/5 = A034263(k); a(2*k + 1) = binomial(k + 4, 4)*(15 + 4*k)/5 = A059599(k), k >= 0.
a(n) = (1/3840)*(4*n^5 + 90*n^4 + 760*n^3 + 2970*n^2 + 5266*n + 3285 + (-1)^n*(30*n^2 + 270*n + 555)). Recurrence: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9). - Vladeta Jovovic, Apr 24 2002
a(n+1) - a(n) = A096338(n+2). - R. J. Mathar, Nov 04 2008

A001769 Expansion of 1/((1+x)*(1-x)^7).

Original entry on oeis.org

1, 6, 22, 62, 148, 314, 610, 1106, 1897, 3108, 4900, 7476, 11088, 16044, 22716, 31548, 43065, 57882, 76714, 100386, 129844, 166166, 210574, 264446, 329329, 406952, 499240, 608328, 736576, 886584, 1061208, 1263576, 1497105, 1765518, 2072862, 2423526, 2822260, 3274194, 3784858
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002620, A002623, A001752, A001753 (first differences), A158454 (signed column k=3), A001779 (partial sums), A169794 (binomial transf.).

Programs

  • Magma
    [(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n+5715)/5760+(-1)^n/128: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Mathematica
    CoefficientList[Series[1/((1+x)(1-x)^7),{x,0,30}],x] (* or *) LinearRecurrence[ {6,-14,14,0,-14,14,-6,1},{1,6,22,62,148,314,610,1106},40] (* Harvey P. Dale, May 24 2015 *)
  • PARI
    a(n)=(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n)\/5760+1 \\ Charles R Greathouse IV, Apr 17 2012

Formula

From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+6, 6).
a(n) = (4*n^6 +96*n^5 +910*n^4 +4320*n^3 +10696*n^2 +12864*n+5715)/5760+(-1)^n/128. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (7 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A046521 (here for the unsigned column k = 3 with offset 0).
a(n)+a(n+1) = A000579(n+7). - R. J. Mathar, Jan 06 2021

A239473 Triangle read by rows: signed version of A059260: coefficients for expansion of partial sums of sequences a(n,x) in terms of their binomial transforms (1+a(.,x))^n ; Laguerre polynomial expansion of the truncated exponential.

Original entry on oeis.org

1, 0, 1, 1, -1, 1, 0, 2, -2, 1, 1, -2, 4, -3, 1, 0, 3, -6, 7, -4, 1, 1, -3, 9, -13, 11, -5, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Tom Copeland, Mar 19 2014

Keywords

Comments

With T the lower triangular array above and the Laguerre polynomials L(k,x) = Sum_{j=0..k} (-1)^j binomial(k, j) x^j/j!, the following identities hold:
(A) Sum_{k=0..n} (-1)^k L(k,x) = Sum_{k=0..n} T(n,k) x^k/k!;
(B) Sum_{k=0..n} x^k/k! = Sum_{k=0..n} T(n,k) L(k,-x);
(C) Sum_{k=0..n} x^k = Sum_{k=0..n} T(n,k) (1+x)^k = (1-x^(n+1))/(1-x).
More generally, for polynomial sequences,
(D) Sum_{k=0..n} P(k,x) = Sum_{k=0..n} T(n,k) (1+P(.,x))^k,
where, e.g., for an Appell sequence, such as the Bernoulli polynomials, umbrally, (1+ Ber(.,x))^k = Ber(k,x+1).
Identity B follows from A through umbral substitution of j!L(j,-x) for x^j in A. Identity C, related to the cyclotomic polynomials for prime index, follows from B through the Laplace transform.
Integrating C gives Sum_{k=0..n} T(n,k) (2^(k+1)-1)/(k+1) = H(n+1), the harmonic numbers.
Identity A >= 0 for x >= 0 (see MathOverflow link for evaluation in terms of Hermite polynomials).
From identity C, W(m,n) = (-1)^n Sum_{k=0..n} T(n,k) (2-m)^k = number of walks of length n+1 between any two distinct vertices of the complete graph K_m for m > 2.
Equals A112468 with the first column of ones removed. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins:
   1
   0    1
   1   -1    1
   0    2   -2    1
   1   -2    4   -3    1
   0    3   -6    7   -4    1
   1   -3    9  -13   11   -5    1
   0    4  -12   22  -24   16   -6    1
   1   -4   16  -34   46  -40   22   -7    1
   0    5  -20   50  -80   86  -62   29   -8    1
   1   -5   25  -70  130 -166  148  -91   37   -9    1
		

Crossrefs

For column 2: A001057, A004526, A008619, A140106.
Column 3: A002620, A087811.
Column 4: A002623, A173196.
Column 5: A001752.
Column 6: A001753.
Cf. Bottomley's cross-references in A059260.
Embedded in alternating antidiagonals of T are the reversals of arrays A071921 (A225010) and A210220.

Programs

  • Magma
    [[(&+[(-1)^(j+k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
    
  • Maple
    A239473 := proc(n,k)
        add(binomial(j,k)*(-1)^(j+k),j=k..n) ;
    end proc; # R. J. Mathar, Jul 21 2016
  • Mathematica
    Table[Sum[(-1)^(j+k)*Binomial[j,k], {j,0,n}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n, (-1)^(j+k)*binomial(j, k)), ", "))) \\ G. C. Greubel, Feb 06 2018
    
  • Sage
    Trow = lambda n: sum((x-1)^j for j in (0..n)).list()
    for n in (0..10): print(Trow(n)) # Peter Luschny, Jul 09 2019

Formula

T(n, k) = Sum_{j=0..n} (-1)^(j+k) * binomial(j, k).
E.g.f: (exp(t) - (x-1)*exp((x-1)*t))/(2-x).
O.g.f. (n-th row): (1-(x-1)^(n+1))/(2-x).
Associated operator identities:
With D=d/dx, :xD:^n=x^n*D^n, and :Dx:^n=D^n*x^n, then bin(xD,n)= binomial(xD,n)=:xD:^n/n! and L(n,-:xD:)=:Dx:^n/n!=bin(xD+n,n)=(-1)^n bin(-xD-1,n),
A-o) Sum_{k=0..n} (-1)^k L(k,-:xD:) = Sum_{k=0..n} :-Dx:^k/k!
= Sum_{k=0..n} T(n,k) :-xD:^k/k! = Sum_{k=0..n} (-1)^k T(n,k)bin(xD,k)
B-o) Sum_{k=0..n} :xD:^k/k! = Sum_{k=0..n}, T(n,k) L(k,-:xD:)
= Sum_{k=0..n} T(n,k) :Dx:^k/k! = Sum_{k=0..n}, bin(xD,k).
Associated binomial identities:
A-b) Sum_{k=0..n} (-1)^k bin(s+k,k) = Sum_{k=0..n} (-1)^k T(n,k) bin(s,k)
= Sum_{k=0..n} bin(-s-1,k) = Sum{k=0..n} T(n,k) bin(-s-1+k,k)
B-b) Sum_{k=0..n} bin(s,k) = Sum_{k=0..n} T(n,k) bin(s+k,k)
= Sum_{k=0..n} (-1)^k bin(-s-1+k,k)
= Sum_{k=0..n} (-1)^k T(n,k) bin(-s-1,k).
In particular, from B-b with s=n, Sum_{k=0..n} T(n,k) bin(n+k,k) = 2^n. From B-b with s=0, row sums are all 1.
From identity C with x=-2, the unsigned row sums are the Jacobsthal sequence, i.e., Sum_{k=0..n} T(n,k) (1+(-2))^k = (-1)^n A001045(n+1); for x=2, the Mersenne numbers A000225; for x=-3, A014983 or signed A015518; for x=3, A003462; for x=-4, A014985 or signed A015521; for x=4, A002450; for x=-5, A014986 or signed A015531; and for x=5, A003463; for x=-6, A014987 or signed A015540; and for x=6, A003464.
With -s-1 = m = 0,1,2,..., B-b gives finite differences (recursions):
Sum_{k=0..n} (-1)^k T(n,k) bin(m,k) = Sum_{k=0..n} (-1)^k bin(m+k,k) = T(n+m,m), i.e., finite differences of the columns of T generate shifted columns of T. The columns of T are signed, shifted versions of sequences listed in the cross-references. Since the finite difference is an involution, T(n,k) = Sum_{j=0..k} (-1)^j T(n+j,j) bin(k,j)}. Gauss-Newton interpolation can be applied to give a generalized T(n,s) for s noninteger.
From identity C, S(n,m) = Sum_{k=0..n} T(n,k) bin(k,m) = 1 for m < n+1 and 0 otherwise, i.e., S = T*P, where S = A000012, as a lower triangular matrix and P = Pascal = A007318, so T = S*P^(-1), where P^(-1) = A130595, the signed Pascal array (see A132440), the inverse of P, and T^(-1) = P*S^(-1) = P*A167374 = A156644.
U(n,cos(x)) = e^(-n*i*x)*Sum_{k=0..n} T(n,k)*(1+e^(2*i*x))^k = sin((n+1)x)/sin(x), where U is the Chebyschev polynomial of the second kind A053117 and i^2 = -1. - Tom Copeland, Oct 18 2014
From Tom Copeland, Dec 26 2015: (Start)
With a(n,x) = e^(nx), the partial sums are 1+e^x+...+e^(nx) = Sum_{k=0..n} T(n,k) (1+e^x)^k = [ x / (e^x-1) ] [ e^((n+1)x) -1 ] / x = [ (x / (e^x-1)) e^((n+1)x) - (x / (e^x-1)) ] / x = Sum_{k>=0} [ (Ber(k+1,n+1) - Ber(k+1,0)) / (k+1) ] * x^k/k!, where Ber(n,x) are the Bernoulli polynomials (cf. Adams p. 140). Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of the m-th powers of the integers, their binomial transforms, and the Bernoulli polynomials.
With a(n,x) = (-1)^n e^(nx), the partial sums are 1-e^x+...+(-1)^n e^(nx) = Sum_{k=0..n} T(n,k) (1-e^x)^k = [ (-1)^n e^((n+1)x) + 1 ] / (e^x+1) = [ (-1)^n (2 / (e^x+1)) e^((n+1)x) + (2 / (e^x+1)) ] / 2 = (1/2) Sum_{k>=0} [ (-1)^n Eul(k,n+1) + Eul(k,0) ] * x^k/k!, where Eul(n,x) are the Euler polynomials. Evaluating (d/dx)^m at x=0 of these expressions gives relations among the partial sums of signed m-th powers of the integers; their binomial transforms, related to the Stirling numbers of the second kind and face numbers of the permutahedra; and the Euler polynomials. (End)
As in A059260, a generator in terms of bivariate polynomials with the coefficients of this entry is given by (1/(1-y))*1/(1 + (y/(1-y))*x - (1/(1-y))*x^2) = 1 + y + (x^2 - x*y + y^2) + (2*x^2*y - 2*x*y^2 + y^3) + (x^4 - 2*x^3*y + 4*x^2*y^2 - 3*x*y^3 + y^4) + ... . This is of the form -h2 * 1 / (1 + h1*x + h2*x^2), related to the bivariate generator of A049310 with h1 = y/(1-y) and h2 = -1/(1-y) = -(1+h1). - Tom Copeland, Feb 16 2016
From Tom Copeland, Sep 05 2016: (Start)
Letting P(k,x) = x in D gives Sum_{k=0..n} T(n,k)*Sum_{j=0..k} binomial(k,j) = Sum_{k=0..n} T(n,k) 2^k = n + 1.
The quantum integers [n+1]q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)) = q^(-n)*(1 - q^(2*(n+1))) / (1 - q^2) = q^(-n)*Sum{k=0..n} q^(2k) = q^(-n)*Sum_{k=0..n} T(n,k)*(1 + q^2)^k. (End)
T(n, k) = [x^k] Sum_{j=0..n} (x-1)^j. - Peter Luschny, Jul 09 2019
a(n) = -n + Sum_{k=0..n} A341091(k). - Thomas Scheuerle, Jun 17 2022

Extensions

Inverse array added by Tom Copeland, Mar 26 2014
Formula re Euler polynomials corrected by Tom Copeland, Mar 08 2024

A112465 Riordan array (1/(1+x), x/(1-x)).

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, 0, 2, 2, 1, -1, 1, 2, 4, 3, 1, 1, 0, 3, 6, 7, 4, 1, -1, 1, 3, 9, 13, 11, 5, 1, 1, 0, 4, 12, 22, 24, 16, 6, 1, -1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, -1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Inverse is A112466. Note that C(n,k) = Sum_{j = 0..n-k} C(j+k-1, j).

Examples

			Triangle starts
   1;
  -1, 1;
   1, 0, 1;
  -1, 1, 1,  1;
   1, 0, 2,  2,  1;
  -1, 1, 2,  4,  3,  1;
   1, 0, 3,  6,  7,  4,  1;
  -1, 1, 3,  9, 13, 11,  5, 1;
   1, 0, 4, 12, 22, 24, 16, 6, 1;
Production matrix begins
  -1, 1;
   0, 1, 1;
   0, 0, 1, 1;
   0, 0, 0, 1, 1;
   0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 1, 1;
   0, 0, 0, 0, 0, 0, 0, 1, 1; - _Paul Barry_, Apr 08 2011
		

Crossrefs

Columns: A033999(n) (k=0), A000035(n) (k=1), A004526(n) (k=2), A002620(n-1) (k=3), A002623(n-4) (k=4), A001752(n-5) (k=5), A001753(n-6) (k=6), A001769(n-7) (k=7), A001779(n-8) (k=8), A001780(n-9) (k=9), A001781(n-10) (k=10), A001786(n-11) (k=11), A001808(n-12) (k=12).
Diagonals: A000012(n) (k=n), A023443(n) (k=n-1), A152947(n-1) (k=n-2), A283551(n-3) (k=n-3).
Main diagonal: A072547.
Sums: A078008 (row), A078024 (diagonal), A092220 (signed diagonal), A280560 (signed row).

Programs

  • Haskell
    a112465 n k = a112465_tabl !! n !! k
    a112465_row n = a112465_tabl !! n
    a112465_tabl = iterate f [1] where
       f xs'@(x:xs) = zipWith (+) ([-x] ++ xs ++ [0]) ([0] ++ xs')
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    A112465:= func< n,k | (-1)^(n+k)*(&+[(-1)^j*Binomial(j+k-1,j): j in [0..n-k]]) >;
    [A112465(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Apr 18 2025
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[j+k-1, j]*(-1)^(n-k-j), {j, 0, n-k}];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jul 23 2018 *)
  • SageMath
    def A112465(n,k): return (-1)^(n+k)*sum((-1)^j*binomial(j+k-1,j) for j in range(n-k+1))
    print(flatten([[A112465(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 18 2025

Formula

Number triangle T(n, k) = Sum_{j=0..n-k} (-1)^(n-k-j)*C(j+k-1, j).
T(2*n, n) = A072547(n) (main diagonal). - Paul Barry, Apr 08 2011
From Reinhard Zumkeller, Jan 03 2014: (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k), 0 < k < n, with T(n, 0) = (-1)^n and T(n, n) = 1.
T(n, k) = A108561(n, n-k). (End)
T(n, k) = T(n-1, k-1) + T(n-2, k) + T(n-2, k-1), T(0, 0) = 1, T(1, 0) = -1, T(1, 1) = 1, T(n, k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 11 2014
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 + x + x^2/2! + x^3/3!) = -1 + 2*x^2/2! + 6*x^3/3! + 13*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014

A001779 Expansion of 1/((1+x)(1-x)^8).

Original entry on oeis.org

1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007

Crossrefs

Cf. A001769 (first differences), A169795 (binomial transf.)

Programs

  • Magma
    [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
    seq(A001779(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,7,29,91,239,553,1163,2269,4166},30] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021

A054498 Number of symmetric nonnegative integer 8 X 8 matrices with sum of elements equal to 4*n, under action of dihedral group D_4.

Original entry on oeis.org

1, 4, 16, 44, 116, 260, 560, 1100, 2090, 3740, 6512, 10868, 17732, 28028, 43472, 65780, 97955, 143000, 205920, 291720, 408408, 563992, 770848, 1041352, 1394068, 1847560, 2428960, 3165400, 4095640, 5258440, 6708064, 8498776, 10705189, 13401916, 16689904
Offset: 0

Views

Author

Vladeta Jovovic, May 14 2000

Keywords

References

  • Y. Teranishi, Linear Diophantine equations and invariant theory of matrices, in Commutative algebra and combinatorics (Kyoto, 1985), pp. 259-275, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987. (See p. 273.)

Crossrefs

Column k=4 of A210391. - Alois P. Heinz, Mar 22 2012

Programs

  • PARI
    Vec(1 / ((1-x)^4*(1-x^2)^6) + O(x^40)) \\ Colin Barker, Jan 15 2017

Formula

G.f.: 1 / ((1-x)^4 * (1-x^2)^6).
a(n) = ((8+n)*(2835*(1739+309*(-1)^n) + 576*(15259+1029*(-1)^n)*n + 36*(166171+3717*(-1)^n)*n^2 + 448*(4661+27*(-1)^n)*n^3 + 14*(29749+27*(-1)^n)*n^4 + 49280*n^5 + 3416*n^6 + 128*n^7 + 2*n^8)) / 46448640. - Colin Barker, Jan 15 2017

A128494 Coefficient table for sums of Chebyshev's S-Polynomials.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, -1, -2, 1, 1, 1, 2, -2, -3, 1, 1, 0, 2, 4, -3, -4, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, -2, -6, 7, 11, -5, -6, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, 3, 9, -13, -24, 16, 22, -7, -8, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, -3, -12, 22, 46, -40, -62, 29, 37, -9, -10, 1, 1, 1, 4, -12
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2007

Keywords

Comments

See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
This is a 'repetition triangle' based on a signed version of triangle A059260: a(2*p,2*k) = a(2*p+1,2*k) = A059260(p+k,2*k)*(-1)^(p+k) and a(2*p+1,2*k+1) = a(2*p+2,2*k+1) = A059260(p+k+1,2*k+1)*(-1)^(p+k), k >= 0.

Examples

			The triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6   7   8   9  10
   0:  1
   1:  1   1
   2:  0   1   1
   3:  0  -1   1   1
   4:  1  -1  -2   1   1
   5:  1   2  -2  -3   1   1
   6:  0   2   4  -3  -4   1   1
   7:  0  -2   4   7  -4  -5   1   1
   8:  1  -2  -6   7  11  -5  -6   1   1
   9:  1   3  -6 -13  11  16  -6  -7   1   1
  10:  0   3   9 -13 -24  16  22  -7  -8   1   1
... reformatted by _Wolfdieter Lang_, Oct 16 2012
Row polynomial S(1;4,x) = 1 - x - 2*x^2 + x^3 + x^4 = Sum_{k=0..4} S(k,x).
S(4,y)*S(5,y)/y = 3 - 13*y^2 + 16*y^4 - 7*y^6 + y^8, with y=sqrt(2+x) this becomes S(1;4,x).
From _Wolfdieter Lang_, Oct 16 2012: (Start)
S(1;4,x) = (1 - (S(5,x) - S(4,x)))/(2-x) = (1-x)*(2-x)*(1+x)*(1-x-x^2)/(2-x) = (1-x)*(1+x)*(1-x-x^2).
S(5,x) - S(4,x) = R(11,sqrt(2+x))/sqrt(2+x) = -1 + 3*x + 3*x^2 - 4*x^3 - x^4 + x^5. (End)
		

Crossrefs

Row sums (signed): A021823(n+2). Row sums (unsigned): A070550(n).
Cf. A128495 for S(2; n, x) coefficient table.
The column sequences (unsigned) are, for m=0..4: A021923, A002265, A008642, A128498, A128499.
For m >= 1 the column sequences (without leading zeros) are of the form a(m, 2*k) = a(m, 2*k+1) = ((-1)^k)*b(m, k) with the sequences b(m, k), given for m=1..11 by A008619, A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808.

Formula

S(1;n,x) = Sum_{k=0..n} S(k,x) = Sum_{m=0..n} a(n,m)*x^m, n >= 0.
a(n,m) = [x^m](S(n,y)*S(n+1,y)/y) with y:=sqrt(2+x).
G.f. for column m: (x^m)/((1-x)*(1+x^2)^(m+1)), which shows that this is a lower diagonal matrix of the Riordan type, named (1/((1+x^2)*(1-x)), x/(1+x^2)).
From Wolfdieter Lang, Oct 16 2012: (Start)
a(n,m) = [x^m](1- (S(n+1,x) - S(n,x)))/(2-x). From the Binet - de Moivre formula for S and use of the geometric sum.
a(n,m) = [x^m](1- R(2*n+3,sqrt(2+x))/sqrt(2+x))/(2-x) with the monic integer T-polynomials R with coefficient triangle given in A127672. From the odd part of the bisection of the T-polynomials. (End)
Showing 1-10 of 14 results. Next