cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Miquel A. Fiol

Miquel A. Fiol's wiki page.

Miquel A. Fiol has authored 15 sequences. Here are the ten most recent ones:

A376313 Independence number of the 2-supertoken graph FF_2(C_n) of the cycle C_n on n vertices.

Original entry on oeis.org

2, 3, 6, 7, 12, 14, 20, 22, 30, 33, 42, 45, 56, 60, 72, 76, 90, 95, 110, 115, 132, 138, 156, 162, 182, 189, 210, 217, 240, 248, 272, 280, 306, 315, 342, 351, 380, 390, 420, 430, 462, 473, 506, 517, 552, 564, 600, 612, 650, 663, 702, 715, 756, 770, 812, 826, 870, 885, 930, 945, 992, 1008
Offset: 2

Author

Miquel A. Fiol, Sep 26 2024

Keywords

Comments

Given a graph G on n vertices and an integer k>=1, the k-supertoken (or reduced k-th power) FF_k(G) of G has vertices representing configurations of k indistinguishable tokens in the (not necessarily different) vertices of G, with two configurations being adjacent if one can be obtained from the other by moving one token along an edge of G.

Formula

a(n) = k*(n+2) if n=4*k or n=4*k+1, and a(n)=(k+1)*n if n=4*k+2 or n=4*k+3.

A375747 Table read by rows: T(n,k) for n >= 3 and k=1,2,...,2*n-1 are the distinct eigenvalues of the twisted odd graph O^(sigma)_n.

Original entry on oeis.org

3, 2, 1, -1, -2, 4, 3, 2, 1, -1, -2, -3, 5, 4, 3, 2, 1, -1, -2, -3, -4, 6, 5, 4, 3, 2, 1, -1, -2, -3, -4, -5, 7, 6, 5, 4, 3, 2, 1, -1, -2, -3, -4, -5, -6, 8, 7, 6, 5, 4, 3, 2, 1, -1, -2, -3, -4, -5, -6, -7, 9, 8, 7, 6, 5, 4, 3, 2, 1, -1, -2, -3, -4, -5, -6, -7, -8
Offset: 3

Author

Miquel A. Fiol, Aug 26 2024

Keywords

Examples

			The table begins:
  3  2  1 -1 -2
  4  3  2  1 -1 -2 -3
  5  4  3  2  1 -1 -2 -3 -4
  6  5  4  3  2  1 -1 -2 -3 -4 -5
  7  6  5  4  3  2  1 -1 -2 -3 -4 -5 -6
  ...
		

Crossrefs

Cf. A001700.

Programs

  • Mathematica
    T[n_,k_]:=If[k==1, n, If[1Stefano Spezia, Aug 27 2024 *)

Formula

T(n,1) = n; T(n,k) = n+1-k for k=2,...,n; T(n,k) = n-k for k=n+1,...,2n-1.

A375309 Number of walks of length n along the edges of a dodecahedron graph between two vertices at distance two.

Original entry on oeis.org

0, 0, 1, 1, 7, 11, 51, 105, 399, 967, 3299, 8789, 28271, 79443, 247507, 716353, 2193583, 6452639, 19575075, 58095597, 175350735, 522947755, 1574075603, 4706879321, 14146450127, 42363311991, 127217598691, 381275400325, 1144458922159
Offset: 0

Author

Miquel A. Fiol, Aug 11 2024

Keywords

Crossrefs

Cf. A054883.

Programs

  • Mathematica
    LinearRecurrence[{2, 10, -16, -25, 30}, {0, 0, 1, 1, 7, 11}, 30] (* Amiram Eldar, Aug 13 2024 *)

Formula

For n>=6, a(n) = 2*a(n-1) + 10*a(n-2) - 16*a(n-3) - 25*a(n-4) + 30*a(n-5).
From Stefano Spezia, Aug 13 2024: (Start)
G.f.: x^2*(1 - x - 5*x^2 + 3*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)*(1 - 5*x^2)).
a(n) = (3*5^(n/2)*(1 + (-1)^n) + 3^(1+n) + (-1)^n*2^(1+n) - 5)/60 for n > 0. (End)

A374795 The minimum diameter of a chordal ring mixed graph with 2*n vertices.

Original entry on oeis.org

1, 3, 3, 3, 4, 5, 5, 6, 5, 7, 7, 7, 7, 7, 9, 7, 8, 9, 9, 9, 9, 10, 9, 11, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 11, 12, 13, 13, 13, 13, 13, 13, 14, 13, 15, 13, 15, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 15, 16
Offset: 2

Author

Miquel A. Fiol, Jul 20 2024

Keywords

Comments

Let N >= 2 and c(< N ) be, respectively, even and odd numbers. The chordal ring mixed graph CRM(N, c) is a mixed graph with vertex set V = Z_N (all arithmetic is modulo N ), with arcs i -> i + 1 (forming a directed cycle) and edges i ∼ i + c if i is even (and, hence, i ∼ i - c if i is odd, forming the ‘chords’).

Crossrefs

Cf. A373503.

A374622 Maximum number of vertices of a chordal ring mixed graph CRM(N,c) with diameter n.

Original entry on oeis.org

8, 10, 18, 16, 32, 34, 50, 44, 72, 74, 98, 88, 128, 130, 162, 148, 200, 202, 242, 224, 288, 290, 338, 316, 392, 394, 450, 424, 512, 514, 578, 548, 648, 650, 722, 688, 800, 802, 882, 844, 968, 970, 1058, 1016, 1152, 1154
Offset: 3

Author

Miquel A. Fiol, Jul 14 2024

Keywords

Examples

			For n = 9, the maximum number of vertices a(9) = 50 is attained by the chordal ring mixed graph CRM(50,9).
		

Crossrefs

Cf. A371396.

Formula

If n is odd, a(n) = (n+1)^2/2.
Conjecture: If n is even, n=0 mod 4, a(n) = n^2/2+2;
If n (> 2) is even, n=2 mod 4, a(n) = n*(n/2 - 1) + 4.
Conjectured g.f.: 2*(1 + x + 2*x^2 + x^3 + 2*x^4 - 3*x^5 + 4*x^6 - x^7 + x^8)/((1 - x)^3*(1 + x + x^2 + x^3)^2). - Stefano Spezia, Jul 14 2024

A373503 The minimum diameter of a chordal ring graph with 2*n vertices.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 10, 10, 10, 9, 10, 11, 11, 10, 10, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 12, 12, 11, 11, 12, 12
Offset: 1

Author

Miquel A. Fiol, Jul 10 2024

Keywords

Crossrefs

A373554 Number of ternary length-2 squarefree words of length n not containing the subwords 021 or 10.

Original entry on oeis.org

1, 3, 5, 7, 11, 16, 24, 36, 53, 80, 118, 177, 263, 392, 585, 870, 1299, 1933, 2883, 4295, 6400, 9540, 14212, 21185, 31564, 47042, 70101, 104463, 155680, 231985, 345722, 515187, 767749, 1144111, 1704963, 2540784, 3786288, 5642420, 8408397
Offset: 0

Author

Miquel A. Fiol, Jun 09 2024

Keywords

Examples

			For n=3 the a(3)=7 solutions are  012, 020, 120, 121, 201, 202, 212.
		

Formula

a(n) = 2*a(n-2) + a(n-3) - a(n-4).
G.f.: ((1+x)*(1+2*x+x^2-x^3))/(1-2*x^2-x^3+x^4).

A373080 a(n) is the number of binary strings of length n not containing the substrings 0000, 0001, 0011, 0111, 1111.

Original entry on oeis.org

1, 2, 4, 8, 11, 18, 28, 40, 64, 96, 144, 224, 336, 512, 784, 1184, 1808, 2752, 4176, 6368, 9680, 14720, 22416, 34080, 51856, 78912, 120016, 182624, 277840, 422656, 643088, 978336, 1488400, 2264512, 3445072, 5241312, 7974096, 12131456, 18456720, 28079648
Offset: 0

Author

Miquel A. Fiol, Jun 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 2}, {1, 2, 4, 8, 11, 18, 28}, 50] (* Paolo Xausa, Jun 24 2024 *)

Formula

a(n) = a(n-2) + 2*a(n-3) for n >= 7.
G.f.: -(x+1)^2*(x^2+1)^2/(2*x^3+x^2-1). - Alois P. Heinz, Jun 03 2024

A373447 Number of ternary strings of length n avoiding the substrings 00, 11, 22, 121, 212, 202.

Original entry on oeis.org

1, 3, 6, 9, 14, 23, 36, 57, 90, 143, 226, 357, 566, 895, 1416, 2241, 3546, 5611, 8878, 14049, 22230, 35175, 55660, 88073, 139362, 220519, 348938, 552141, 873678, 1382463, 2187536, 3461441, 5477202, 8666835, 13713942, 21700217, 34337278, 54333495, 85974452
Offset: 0

Author

Miquel A. Fiol, Jun 05 2024

Keywords

Examples

			For n=3 the a(3)=9 solutions are 010, 012, 020, 021, 101, 102, 120, 201, 210.
		

Crossrefs

Cf. A003945.

Programs

  • Mathematica
    LinearRecurrence[{0,1,2,1,0,-1},{1,3,6,9,14,23,36},40] (* Harvey P. Dale, Aug 04 2025 *)

Formula

a(n) = a(n-2) + 2*a(n-3) + a(n-4) - a(n-6).
G.f.: (x+1)*(x^2+x+1)*(x^3-x^2-x-1)/(-x^6+x^4+2*x^3+x^2-1). - Alois P. Heinz, Jun 05 2024

A369859 Minimum chord of a chordal ring graph with 2*n vertices and minimal diameter.

Original entry on oeis.org

1, 1, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 15, 7, 7, 9, 7, 19, 7, 9, 9, 9, 9, 9, 9, 11, 19, 19, 9, 9, 21, 11, 29, 23, 23, 11, 11, 25, 11, 11, 11, 11, 11, 13, 13, 23, 23, 41, 11, 25, 25, 13, 15, 27, 27, 27, 13, 13, 29, 29, 13, 13, 13, 31, 13, 15, 15, 15, 17, 27, 13, 43, 29, 29, 29, 45, 17, 17, 31, 31, 31, 39
Offset: 1

Author

Miquel A. Fiol, Apr 30 2024

Keywords

Comments

Given integers n and c (odd), the chordal ring graph CR(2*n,c) is a bipartite graph with vertex set Z_{2*n}, and edges {i,i+1}, {i,i-1}, {i,i+c} if i is odd, and {i,i-c} if i is even.

Crossrefs

Cf. A371396.