cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A368430 Number of binary words of length n not containing the substrings 0000, 0001, 0011, 0111.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 32, 48, 76, 116, 176, 272, 412, 628, 960, 1456, 2220, 3380, 5136, 7824, 11900, 18100, 27552, 41904, 63756, 97012, 147568, 224528, 341596, 519668, 790656, 1202864, 1829996, 2784180, 4235728, 6444176, 9804092, 14915636, 22692448, 34523824
Offset: 0

Views

Author

Miquel A. Fiol, Dec 24 2023

Keywords

Examples

			For n=5, the a(5) = 20 words are: 00100, 00101, 01000, 01001, 01010, 01011, 01100, 01101, 10010, 10100, 10101, 10110, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111.
		

Crossrefs

Programs

  • Mathematica
    m={
     {1,1,0,0,0,0,0},
     {0,0,1,1,0,0,0},
     {0,0,0,0,1,1,0},
     {0,1,0,0,0,1,0},
     {0,0,0,0,0,0,2},
     {0,1,0,0,0,0,1},
     {0,0,0,0,0,0,2}
    };
    a[0] = 1; a[n_]:=(2^n-MatrixPower[m,n][[1,7]]);
    Table[a[n],{n,1,39}] (* Robert P. P. McKone, Jan 01 2024 *)
    LinearRecurrence[{1, 1, 1, -2}, {1, 2, 4, 8}, 50] (* Paolo Xausa, Jun 24 2024 *)

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) - 2*a(n-4) with a(0)=1, a(1)=2, a(2)=4, and a(3)=8.
G.f.: (x+1)*(x^2+1)/((x-1)*(2*x^3+x^2-1)). - Alois P. Heinz, Dec 30 2023
Showing 1-1 of 1 results.