A112468 Riordan array (1/(1-x), x/(1+x)).
1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0
Examples
Triangle starts 1; 1, 1; 1, 0, 1; 1, 1, -1, 1; 1, 0, 2, -2, 1; 1, 1, -2, 4, -3, 1; 1, 0, 3, -6, 7, -4, 1; Matrix log begins: 0; 1, 0; 1, 0, 0; 1, 1, -1, 0; 1, 1, 1, -2, 0; 1, 1, 1, 1, -3, 0; ... Production matrix begins 1, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1. - _Paul Barry_, Apr 08 2011
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- H. Belbachir and F. Bencherif, On some properties of bivariate Fibonacci and Lucas Polynomials, JIS 11 (2008) 08.2.6.
- Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
- Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- H. Prodinger, On the expansion of Fibonacci and Lucas Polynomials, JIS 12 (2009) 09.1.6.
Crossrefs
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; else return T(n-1,k-1) - T(n-1,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
-
Haskell
a112468 n k = a112468_tabl !! n !! k a112468_row n = a112468_tabl !! n a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1] -- Reinhard Zumkeller, Jan 03 2014
-
Magma
function T(n,k) if k eq 0 or k eq n then return 1; else return T(n-1,k-1) - T(n-1,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
-
Maple
T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hypergeom( [1,n+1],[k+2],m)/(k+1)!; A112468 := (n,k) -> T(n,n-k,-1); seq(print(seq(simplify(A112468(n,k)),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
-
Mathematica
T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
-
PARI
{T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x),n,X),k,Y)} \\ Paul D. Hanna, Jan 20 2006
-
PARI
T(n,k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
-
Sage
@CachedFunction def T(n, k): if (k<0 or n<0): return 0 elif (k==0 or k==n): return 1 else: return T(n-1, k-1) - T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
Formula
Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014
Comments