A173432
NW-SE diagonal sums of Riordan array A112468.
Original entry on oeis.org
1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1
-
[2*Ceiling(n/6)-2*Floor(n/6)+Floor(n/3)-Ceiling(n/3) : n in [1..100]]; // Wesley Ivan Hurt, Sep 27 2014
-
A173432:=n->2*ceil(n/6)-2*floor(n/6)+floor(n/3)-ceil(n/3): seq(A173432(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2014
-
Table[2 Ceiling[n/6] - 2 Floor[n/6] + Floor[n/3] - Ceiling[n/3], {n, 50}] (* Wesley Ivan Hurt, Sep 27 2014 *)
-
Vec(-x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 7, 4, 3, 1, 1, 1, 11, 7, 9, 3, 1, 1, 1, 16, 11, 22, 9, 4, 1, 1, 1, 22, 16, 46, 22, 16, 4, 1, 1, 1, 29, 22, 86, 46, 50, 16, 5, 1, 1, 1, 37, 29, 148, 86, 130, 50, 25, 5, 1
Offset: 1
Array starts:
1,1,1,1
1,1,2,2
1,1,4,4
1,1,7,7
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 2, 2, 0, 0, 4, 3, 6, 2, 0, 0, 5, 4, 13, 6, 3, 0, 0, 6, 5, 24, 13, 12, 3, 0, 0, 7, 6, 40, 24, 34, 12, 4, 0, 0, 8, 7, 62, 40, 80, 34, 20, 4, 0, 0, 9, 8, 91, 62, 166, 80, 70, 20, 5, 0, 0, 10, 9, 128, 91, 314, 166, 200, 70, 30, 5, 0
Offset: 1
Array starts:
0,0,0,0
0,1,1,2
0,2,2,6
0,3,3,13
A279008
Triangle read by rows: 2-analog of triangle A112468.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 2, 2, -1, 1, 4, 0, 3, -2, 1, 4, 4, -3, 5, -3, 1, 8, 0, 7, -8, 8, -4, 1, 8, 8, -7, 15, -16, 12, -5, 1, 16, 0, 15, -22, 31, -28, 17, -6, 1, 16, 16, -15, 37, -53, 59, -45, 23, -7, 1, 32, 0, 31, -52, 90, -112, 104, -68, 30, -8, 1
Offset: 0
Triangle begins:
1,
1,1,
2,0,1,
2,2,-1,1,
4,0,3,-2,1,
4,4,-3,5,-3,1,
8,0,7,-8,8,-4,1,
8,8,-7,15,-16,12,-5,1,
16,0,15,-22,31,-28,17,-6,1,
16,16,-15,37,-53,59,-45,23,-7,1,
32,0,31,-52,90,-112,104,-68,30,-8,1,
...
A033484
a(n) = 3*2^n - 2.
Original entry on oeis.org
1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470
Offset: 0
Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110,
G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
- J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 3, 10.
- Dennis E. Davenport, Shakuan K. Frankson, Louis W. Shapiro, and Leon C. Woodson, An Invitation to the Riordan Group, Enum. Comb. Appl. (2024) Vol. 4, No. 3, Art. #S2S1. See p. 22.
- Erik D. Demaine et al., Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012, 2014. See p. 8, actually length(Sn) is 2^n+2^(n-1)-2, that is, a(n-1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Egor Lappo and Noah A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
-
a033484 = (subtract 2) . (* 3) . (2 ^)
a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1
-- Reinhard Zumkeller, Apr 23 2013
-
[3*2^n-2: n in [1..36]]; // Vincenzo Librandi, Nov 22 2010
-
with(combinat):a:=n->stirling2(n,2)+stirling2(n+1,2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
-
Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
(* Start from Eric W. Weisstein, Sep 21 2017 *)
3*2^Range[0, 35] - 2
LinearRecurrence[{3, -2}, {1, 4}, 36]
CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
-
a(n) = 3<Charles R Greathouse IV, Nov 02 2011
-
[3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
A048473
a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.
Original entry on oeis.org
1, 5, 17, 53, 161, 485, 1457, 4373, 13121, 39365, 118097, 354293, 1062881, 3188645, 9565937, 28697813, 86093441, 258280325, 774840977, 2324522933, 6973568801, 20920706405, 62762119217, 188286357653, 564859072961, 1694577218885, 5083731656657, 15251194969973, 45753584909921
Offset: 0
a(0) = 1;
a(1) = 1 + 3 + 1 = 5;
a(2) = 1 + 3 + 9 + 3 + 1 = 17;
a(3) = 1 + 3 + 9 + 27 + 9 + 3 + 1 = 53; etc. - _Philippe Deléham_, Feb 23 2014
- Theoni Pappas, Math Stuff, Wide World Publ/Tetra, San Carlos CA, page 15, 2002.
a(n)=T(2,n), array T given by
A048471.
-
[2*3^n - 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
-
g:= ((1+x)/(1-3*x)/(1-x)): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009; typo fixed by Marko Mihaily, Mar 07 2009
-
NestList[3 # + 2 &, 1, 30] (* Harvey P. Dale, Mar 06 2012 *)
LinearRecurrence[{4, -3}, {1, 5}, 30] (* Harvey P. Dale, Mar 06 2012 *)
Table[2 3^n - 1, {n, 20}] (* Eric W. Weisstein, May 28 2017 *)
2 3^Range[20] - 1 (* Eric W. Weisstein, May 28 2017 *)
-
first(m)=vector(m,n,n--;2*3^n - 1) \\ Anders Hellström, Dec 11 2015
A112555
Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I) and consequently the matrix logarithm satisfies log(T) = T - I, where I is the identity matrix.
Original entry on oeis.org
1, 1, 1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -2, 0, 1, 1, 3, 4, 2, 1, 1, -1, -4, -7, -6, -3, 0, 1, 1, 5, 11, 13, 9, 3, 1, 1, -1, -6, -16, -24, -22, -12, -4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, -1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, -1, -10, -46, -128, -239, -314, -296, -200, -95, -30, -6, 0
Offset: 0
Triangle T begins:
1;
1, 1;
-1, 0, 1;
1, 1, 1, 1;
-1, -2, -2, 0, 1;
1, 3, 4, 2, 1, 1;
-1, -4, -7, -6, -3, 0, 1;
1, 5, 11, 13, 9, 3, 1, 1;
-1, -6, -16, -24, -22, -12, -4, 0, 1;
1, 7, 22, 40, 46, 34, 16, 4, 1, 1;
-1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1;
...
Matrix log, log(T) = T - I, begins:
0;
1, 0;
-1, 0, 0;
1, 1, 1, 0;
-1, -2, -2, 0, 0;
1, 3, 4, 2, 1, 0;
-1, -4, -7, -6, -3, 0, 0;
...
Matrix inverse, T^-1 = 2*I - T, begins:
1;
-1, 1;
1, 0, 1;
-1, -1, -1, 1;
1, 2, 2, 0, 1;
-1, -3, -4, -2, -1, 1;
...
where adjacent sums in row n of T^-1 gives row n+1 of T.
Sum_{k=0..n} T(n, k)*x^(n-k) =
A165760(n),
A165759(n),
A165758(n),
A165755(n),
A165752(n),
A165746(n),
A165751(n),
A165747(n),
A000007(n),
A000012(n),
A084247(n),
A165553(n),
A165622(n),
A165625(n),
A165638(n),
A165639(n),
A165748(n),
A165749(n),
A165750(n) for x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} T(n, k)*x^k =
A166157(n),
A166153(n),
A166152(n),
A166149(n),
A166036(n),
A166035(n),
A091004(n+1),
A077925(n),
A000007(n),
A165326(n),
A084247(n),
A165405(n),
A165458(n),
A165470(n),
A165491(n),
A165505(n),
A165506(n),
A165510(n),
A165511(n) for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. (End)
-
Clear[t]; t[0, 0] = 1; t[n_, 0] = (-1)^(Mod[n, 2]+1); t[n_, n_] = 1; t[n_, k_] /; k == n-1 := t[n, k] = Mod[n, 2]; t[n_, k_] /; 0 < k < n-1 := t[n, k] = -t[n-1, k] - t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff( polcoeff( (1+2*x+x*y)/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
-
{T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
-
def A112555_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n+1)]
for n in (0..12): print(A112555_row(n)) # Peter Luschny, Mar 16 2016
A020989
a(n) = (5*4^n - 2)/3.
Original entry on oeis.org
1, 6, 26, 106, 426, 1706, 6826, 27306, 109226, 436906, 1747626, 6990506, 27962026, 111848106, 447392426, 1789569706, 7158278826, 28633115306, 114532461226, 458129844906, 1832519379626, 7330077518506, 29320310074026, 117281240296106, 469124961184426
Offset: 0
a(0) = 1;
a(1) = 1 + 4 + 1 = 6;
a(2) = 1 + 4 + 16 + 4 + 1 = 26;
a(3) = 1 + 4 + 16 + 64 + 16 + 4 + 1 = 106; etc. - _Philippe Deléham_, Feb 22 2014
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, at pp. 104 and 311 (for "Mr. Zanti's ants").
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148. See Satz 9(a) page 132 and Satz 21 page 144 m_k = a(k).
- John Brillhart and Patrick Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869, see page 858 m_k = a(k).
- Kevin Ryde, Iterations of the Alternate Paperfolding Curve, see index "m_k".
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
A057651
a(n) = (3*5^n - 1)/2.
Original entry on oeis.org
1, 7, 37, 187, 937, 4687, 23437, 117187, 585937, 2929687, 14648437, 73242187, 366210937, 1831054687, 9155273437, 45776367187, 228881835937, 1144409179687, 5722045898437, 28610229492187, 143051147460937, 715255737304687, 3576278686523437, 17881393432617187, 89406967163085937
Offset: 0
a(0) = 1;
a(1) = 1 + 5 + 1 = 7;
a(2) = 1 + 5 + 25 + 5 + 1 = 37;
a(3) = 1 + 5 + 25 + 125 + 25 + 5 + 1 = 187; etc. - _Philippe Deléham_, Feb 23 2014
G.f. = 1 + 7*x + 37*x^2 + 187*x^3 + 937*x^4 + 4687*x^5 + 23437*x^6 + ...
-
[(3*5^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Oct 30 2011
-
G.f=(1+x)/(1-5*x)/(1-x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009
-
Table[(3*5^n-1)/2,{n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
-
a(n)=3*5^n\2 \\ Charles R Greathouse IV, Dec 22 2011
A112467
Riordan array ((1-2x)/(1-x), x/(1-x)).
Original entry on oeis.org
1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110
Offset: 0
Triangle starts:
1;
-1, 1;
-1, 0, 1;
-1, -1, 1, 1;
-1, -2, 0, 2, 1;
-1, -3, -2, 2, 3, 1;
-1, -4, -5, 0, 5, 4, 1;
-1, -5, -9, -5, 5, 9, 5, 1;
-1, -6, -14, -14, 0, 14, 14, 6, 1;
-1, -7, -20, -28, -14, 14, 28, 20, 7, 1;
-1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1;
-1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
...
From _Paul Barry_, Apr 08 2011: (Start)
Production matrix begins:
1, 1,
-2, -1, 1,
2, 0, -1, 1,
-2, 0, 0, -1, 1,
2, 0, 0, 0, -1, 1,
-2, 0, 0, 0, 0, -1, 1,
2, 0, 0, 0, 0, 0, -1, 1
... (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Restricting Dyck Paths and 312-avoiding Permutations, arXiv:2307.02837 [math.CO], 2023. Mentions this sequence.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
- D. Foata and G.-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965. [Mentions application to design of antenna arrays. Annotated scan.]
-
[n eq 0 select 1 else (2*k-n)*Binomial(n,k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
-
seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n,k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019
-
T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)
-
T(n, k) = if(n==0, 1, (2*k-n)*binomial(n,k)/n ); \\ G. C. Greubel, Dec 04 2019
-
def T(n, k):
if (n==0): return 1
else: return (2*k-n)*binomial(n,k)/n
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019
Showing 1-10 of 30 results.
Comments