Stuart E Anderson has authored 25 sequences. Here are the ten most recent ones:
A377881
Number of ordered pairs of real n X n (0,1)-matrices that satisfy the equation A + B = A * B.
Original entry on oeis.org
1, 1, 2, 72, 3760, 210042
Offset: 0
One of the 72 solutions in 3x3 (1,0) matrices:
A = {{0,0,0},{0,1,1},{1,1,1}},
B = {{0,0,0},{1,1,1},{0,1,1}}
A + B = {{0,0,0},{1,2,2},{1,2,2}}
A * B = {{0,0,0},{1,2,2},{1,2,2}}
-
\\ See comments. Uses Gray code to generate A-I (called A here).
a(n)= { my(Id=matid(n), A=-Id); sum(f=0, 2^(n^2)-1, if(f, my(t=valuation(f,2), i=t\n+1, j=t%n+1); A[i,j]=if(i==j,-1,1)-A[i,j]); if(abs(matdet(A))==1, my(B=A^(-1)+Id); vecmin(B)>=0 && vecmax(B)<=1 && denominator(B)==1)) } \\ Andrew Howroyd, Nov 12 2024
A367033
Von Neumann ordinals in bracket notation encoded by binary bits: '{' -> 0, '}'-> 1.
Original entry on oeis.org
1, 3, 39, 9807, 642665631, 2760227864398567743, 50917216999682251351660181504218706559, 17326231117678921325668214077168498563134593883851671914433735718213795341567
Offset: 0
For n=3, Von Neumann's 3-element set {0, 1, 2} is
{ {}, {{}}, {{},{{}}} }
0 01 0011 001 00111 1 binary = a(3) = 9807
-
With[{nmax=8},Map[FromDigits[#,2]&,NestList["0"<>StringTake[#,{2,-2}]<>#<>"1"&,"01",nmax]]] (* Paolo Xausa, Nov 20 2023 *)
-
a(n) = my(k = 1); for(m = 1, n, k = (k-1)*2^(2^m)+2*k+1); k; \\ Thomas Scheuerle, Nov 21 2023
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A367033(n): return 1-(m:=1<<(2<A367033(n-1) if n>0 else 1
Original entry on oeis.org
1, 81, 121, 361, 1352569, 2140369, 6416089, 9186961, 30261001, 108056025, 820765201, 2331248089, 170938421809, 8189950752481, 8870860603201, 33527956250889, 136943052939289, 149526943190641, 4953581020385761, 509672946670475329, 578899033007097609, 2043000477545048329
Offset: 1
a(3) = 361 because A005728(34) = 361 and 361 is 19 squared.
-
f(n)=1+sum(k=1, n, eulerphi(k)); \\ A005728
select(x->issquare(x), apply(f, [0..10^5])) \\ Michel Marcus, Sep 28 2023
A346112
Size of the smallest regular polygon chain for a regular polygon with n sides.
Original entry on oeis.org
6, 4, 6, 3, 6, 4, 6, 5, 6, 3, 6, 4, 6, 4, 6, 3, 6, 4
Offset: 3
For n = 6, 3 hexagons can form a ring. See the first link for this and further images.
A319926
Isomer counts of compound perfect squared squares.
Original entry on oeis.org
4, 7, 8, 11, 12, 14, 16
Offset: 1
a(1) = 4, because the compound perfect squares of order 24 comprise the square with side 175 and Bouwkamp code (81,56,38) (18,20) (55,16,3) (1,5,14) (4) (9) (39) (51,30) (29,31,64) (43,8) (35,2) (33) as well as three others from the other symmetries of the order-13 111 X 94 squared subrectangle. See MathWorld link for an explanation of Bouwkamp code.
- Stuart E Anderson, Compound Perfect Squared Squares of the Order Twenties, 2013; arXiv:1303.0599 [math.CO], 2013.
- Stuart E Anderson, Compound Perfect squared Squares
- Stuart E Anderson, 61 page PDF document with images of all the isomers of CPSSs with isomer counts of 4, 7, 8, 11, 12, 16, 19, 20, 23, 24, 28, 31, 32, 35, 36, 39, 40, 47, 48, 56, 60, 63, 64, 68, 72, 76, 80, 88, 96.
- A. J. W. Duijvestijn, P. J. Federico and P. Leeuw, Compound perfect squares, Amer. Math. Monthly 89 (1982), 15-32.
- N. D. Kazarinoff and R. Weitzenkamp, On the existence of compound perfect squared squares of small order, J. Combin. Theory Ser. B 14 (1973), 163-179.
- Eric Weisstein's World of Mathematics, Perfect Square Dissection
- Jim Williams, programs to generate and count compound perfect squared squares and their isomers
A298612
The number of concave polygon classes.
Original entry on oeis.org
0, 1, 3, 8, 14, 29, 53, 100, 180, 343, 623, 1172, 2182, 4105, 7701, 14590, 27584, 52475, 99867, 190732, 364710, 699237, 1342169, 2581412, 4971052, 9587563, 18512775, 35792550, 69273650, 134219777, 260301157, 505294108, 981706812
Offset: 3
-
Table[DivisorSum[n, EulerPhi[#] 2^(n/#) &]/n - Floor[n/2] - 3, {n, 3, 35}] (* Michael De Vlieger, Jan 28 2018 *)
A262244
Number of concave equilateral n-gons with corner angles of m*Pi/n (0 < m < 2n), where m and n are integers.
Original entry on oeis.org
0, 0, 1, 22, 11, 1319, 25858
Offset: 3
For n = 5, the a(5) = 1 solution is (1 3 3 1 7) in m angle factors.
For n = 7, the a(7) = 11 solutions in m angle factors are as follows: (1 11 5 3 5 5 5), (1 5 3 9 1 5 11), (1 5 5 1 11 1 11), (1 5 5 5 1 9 9), (1 5 5 5 3 5 11), (1 9 1 9 3 3 9), (1 9 3 5 1 11 5), (1 9 3 5 5 3 9), (3 3 5 5 3 3 13), (3 3 9 3 5 3 9), (3 5 5 5 5 3 9).
- Stuart E Anderson, concave pentagon
- Stuart E Anderson, concave hexagons
- Stuart E Anderson, concave heptagons
- Stuart E Anderson, concave octagons
- Stuart E Anderson, jk-latest.cpp produces postscript images of convex, concave and intersecting polygons for n, alternatively there is a switch to produce an unsorted list of interior angle multiples m for each polygon. There is a switch to select if reflected polygons are counted. Polygons produced are all invariant under rotation, new version, Aug 04 2024.
Cf.
A262181 (convex equilateral polygons).
A262181
a(n) = total number of convex equilateral n-gons with corner angles of m*Pi/n (0 < m <= n).
Original entry on oeis.org
1, 2, 1, 11, 1, 42, 64, 202, 1, 1557, 1, 5539, 32298, 30666, 1, 405200, 1, 1035642
Offset: 3
For n = 3 there is one convex n-gon, the equilateral triangle, with m angle factors (3 3 3); so a(3) = 1.
For n = 4 there are two convex n-gons, the square and a rhombus, with respective m angle factors (2 2 2 2) and (1 3 1 3); so a(4) = 2.
For n = 5, there is the regular pentagon, m factors (3 3 3 3 3); so a(5) = 1.
For n = 6 there are 11 convex n-gons; here are the m factors:(1 5 6 1 5 6), (1 6 5 1 6 5), (2 4 6 2 4 6), (2 5 5 2 5 5), (2 6 2 6 2 6), (2 6 4 2 6 4), (3 3 6 3 3 6), (3 4 5 3 4 5), (3 5 3 5 3 5), (3 5 4 3 5 4), (4 4 4 4 4 4); so a(6) = 11.
- Stuart E Anderson, for n=3, 1 solution, the equilateral triangle
- Stuart E Anderson, for n=4, 2 solutions
- Stuart E Anderson, for n=5, 1 solution
- Stuart E Anderson, for n=6, 11 solutions
- Stuart E Anderson, for n=7, 1 solution
- Stuart E Anderson, for n=8, 42 solutions
- Stuart E Anderson, n-gons.cpp produces postscript images of convex polygons with n sides, or alternatively produces an unsorted list of interior angle multiples m for each polygon. One rotationally invariant representative polygon is produced in postscript and there is an option to exclude mirror image reflected polygons.
- Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 599-610.
A262244 for concave polygons with corner angles of m*Pi/n (0 < m < 2n), where m and n are integers.
A248505
Alternating the subtraction and multiplication of two previous terms, starting with 3, 2.
Original entry on oeis.org
3, 2, -1, -2, -1, 2, 3, 6, 3, 18, 15, 270, 255, 68850, 68595, 4722765750, 4722697155, 22304192371256441250, 22304192366533744095, 497476997228678085728479670747901918750, 497476997228678085706175478381368174655
Offset: 1
For n = 3, a(n) = a(2) - a(1) = 2 - 3 = -1.
-
a248505[n_Integer] := Module[{f},
f[1] = 3; f[2] = 2; f[k_] := If[EvenQ[k], f[k - 1] * f[k - 2], f[k - 1] - f[k - 2]]; f /@ Range[n]]; a248505[21] (* Michael De Vlieger, Nov 17 2014 *)
-
v=[3,2];for(n=1,20,if(n%2,v=concat(v,v[#v]-v[#v-1]));if(!(n%2),v=concat(v,v[#v]*v[#v-1])));v \\ Derek Orr, Oct 29 2014
A248512
Sequence based on repeating in turn the subtract, add and multiply operations on the previous 2 terms, starting with 0, 1.
Original entry on oeis.org
0, 1, 1, 2, 2, 0, 2, 0, -2, -2, 4, 6, 10, 60, 50, 110, 5500, 5390, 10890, 58697100, 58686210, 117383310, 6888781581155100, 6888781463771790, 13777563044926890, 94910620919839581404684194433100, 94910620919839567627121149506210
Offset: 1
-
nxt[{n_,a_,b_}]:={n+1,b,Which[Mod[n+1,3]==0,b-a,Mod[n+1,3] == 1,a+b,True,a*b]}; NestList[nxt,{2,0,1},30][[All,2]] (* Harvey P. Dale, Sep 20 2021 *)
Comments