A321414 Array read by antidiagonals: T(n,k) is the number of n element multisets of the 2k-th roots of unity with zero sum.
0, 0, 1, 0, 2, 0, 0, 3, 0, 1, 0, 4, 2, 3, 0, 0, 5, 0, 6, 0, 1, 0, 6, 0, 10, 6, 4, 0, 0, 7, 4, 15, 0, 12, 0, 1, 0, 8, 0, 21, 2, 20, 12, 5, 0, 0, 9, 0, 28, 24, 35, 0, 21, 0, 1, 0, 10, 6, 36, 0, 64, 10, 35, 22, 6, 0, 0, 11, 0, 45, 0, 84, 84, 70, 0, 33, 0, 1
Offset: 1
Examples
Array begins: ========================================================= n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ---|----------------------------------------------------- 1 | 0 0 0 0 0 0 0 0 0 0 0 0 ... 2 | 1 2 3 4 5 6 7 8 9 10 11 12 ... 3 | 0 0 2 0 0 4 0 0 6 0 0 8 ... 4 | 1 3 6 10 15 21 28 36 45 55 66 78 ... 5 | 0 0 6 0 2 24 0 0 54 4 0 96 ... 6 | 1 4 12 20 35 64 84 120 183 220 286 396 ... 7 | 0 0 12 0 10 84 2 0 270 40 0 624 ... 8 | 1 5 21 35 70 174 210 330 657 715 1001 1749 ... 9 | 0 0 22 0 30 236 14 0 1028 220 0 3000 ... 10 | 1 6 33 56 128 420 462 792 2097 2010 3003 6864 ... 11 | 0 0 36 0 70 576 56 0 3312 880 2 11976 ... 12 | 1 7 50 84 220 926 924 1716 6039 5085 8008 24216 ... ... T(5, 3) = 6 because there are 6 rotations of the following figure: o---o / \ o---o---o . T(6, 3) = 12 because there are 4 basic shapes illustrated below which with rotations and reflections give 3 + 2 + 1 + 6 = 12 convex paths. o o---o o---o / \ / \ \ \ o===o===o===o o o o o o o / \ \ / \ \ o---o---o o---o o---o
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..465
Crossrefs
Programs
-
PARI
\\ only supports k with at most one odd prime factor. T(n, k)={my(r=valuation(k, 2), p); polcoef(if(k>>r == 1, 1/(1-x^2)^k + O(x*x^n), if(isprimepower(k>>r, &p), ((2/(1 - x^p) - 1)/(1 - x^2 + O(x*x^n))^p)^(k/p), error("Cannot handle k=", k) )), n)}
Formula
G.f. of column k = 2^r: 1/(1 - x^2)^k - 1.
G.f. of column k = 2^r*p^e: ((2/(1 - x^p) - 1)/(1 - x^2)^p)^(k/p) - 1 for odd prime p.
Comments