cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mark Dols

Mark Dols's wiki page.

Mark Dols has authored 115 sequences. Here are the ten most recent ones:

A180115 A109613(n)-fold concatenation of A008619(n).

Original entry on oeis.org

1, 111, 222, 22222, 33333, 3333333, 4444444, 444444444, 555555555, 55555555555, 66666666666, 6666666666666, 7777777777777, 777777777777777, 888888888888888
Offset: 1

Author

Mark Dols, Aug 10 2010

Keywords

Crossrefs

Extensions

Definition rephrased, kewyord:base,less added - R. J. Mathar, Aug 19 2010

A180153 a(n) = 10*a(n-1) + A109242(n).

Original entry on oeis.org

1, 121, 12421, 1246421, 124696421, 12470296421, 1247037296421, 124703817296421, 12470382717296421, 1247038282717296421, 124703828392717296421, 12470382840592717296421, 1247038284073592717296421, 124703828407513592717296421, 12470382840753013592717296421
Offset: 1

Author

Mark Dols, Aug 13 2010

Keywords

Crossrefs

Programs

  • PARI
    Vec(x / ((x-1)*(10*x-1)^2*(100*x-1)) + O(x^30)) \\ Colin Barker, Oct 03 2015

Formula

From Colin Barker, Oct 03 2015: (Start)
a(n) = 121*a(n-1)-2220*a(n-2)+12100*a(n-3)-10000*a(n-4) for n>4.
G.f.: x / ((x-1)*(10*x-1)^2*(100*x-1)).
(End)

A180116 A008619(n-1)-fold concatenation of A109613(n).

Original entry on oeis.org

1, 3, 33, 55, 555, 777, 7777, 9999, 99999, 1111111111, 111111111111, 131313131313, 13131313131313, 15151515151515, 1515151515151515, 1717171717171717, 171717171717171717, 191919191919191919, 19191919191919191919, 21212121212121212121, 2121212121212121212121
Offset: 1

Author

Mark Dols, Aug 10 2010

Keywords

Comments

Written underneath, the first terms have increasing lengths filling a triangular shape:
1,
3,
33,
55,
555,
777,
...

Crossrefs

Programs

  • Maple
    cat2 := proc(a,b) a*10^(max(1,1+ilog10(b)))+b ; end proc:
    A008619 := proc(n) 1+floor(n/2) ; end proc:
    A109613 := proc(n) 2*floor(n/2)+1 ; end proc:
    A180116 := proc(n) a := A109613(n) ; for t from 2 to A008619(n-1) do a := cat2(a,A109613(n)) ; end do: a ; end proc:
    seq(A180116(n),n=1..24) ; # R. J. Mathar, Sep 19 2010

Extensions

Edited by R. J. Mathar, Sep 19 2010

A180052 Partial sums of A180039.

Original entry on oeis.org

1, 113, 111336, 1111333670, 111113333667115, 111111333336667111671, 1111111333333666671111667338, 111111113333333666667111116667334116, 111111111333333336666667111111666673334112005, 1111111111333333333666666671111111666667333341112001005
Offset: 1

Author

Mark Dols, Aug 08 2010

Keywords

Comments

Row 5 of the Pascal array expressed as triangular numbers in 2 ways (value and number of digits). Could be viewed as part of a group expressing the n-th row of the Pascal array in n ways (see example).

Examples

			For the fifth row of the Pascal array, n=5:
1,5,15,..
1,14,150,..
1,113,111336,..
1,1112,1111112223,..
1,11111,111111111111111,..
For n=4:
1,4,10,20,..
1,13,136,1370,..
1,112,111223,1111222334,..
1,1111,1111111111,11111111111111111111,..
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Accumulate[Table[FromDigits[PadRight[{},n,1]],{n,Accumulate[ Range[10]]}]]] (* Harvey P. Dale, Jun 12 2021 *)

A180027 Partial sums of A100706.

Original entry on oeis.org

1, 112, 11223, 1122334, 112233445, 11223344556, 1122334455667, 112233445566778, 11223344556677889, 1122334455667789000, 112233445566778900111, 11223344556677890011222, 1122334455667789001122333, 112233445566778900112233444, 11223344556677890011223344555, 1122334455667789001122334455666
Offset: 0

Author

Mark Dols, Aug 07 2010

Keywords

Comments

Up to n=8 the digits of a(n) sum up to n^2.
Similar to this, A014824 (1,12,123,1234,...) is a representation of the triangular numbers; (1,1112,1112223,1112223334,...) of the pentagonal numbers;(1,11112,111122223,...) of the hexagonal numbers, and so on. A nice thing about this sequence(s) is that the (represented) value of the integer matches the partial sums of the number of digits in the sequence.
f(n) = 100*f(n-1) + A100706(n) gives a mirrored version of this sequence, and f(n) = 10*f(n-1) + A100706(n) the symmetrical version (A002477).

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} A100706(k). - Michel Marcus, Mar 12 2023

Extensions

More terms and edited by Michel Marcus, Mar 12 2023

A180236 a(n) = a(n-2)+a(n-4); a(1)=a(4)=101, a(2)=a(3)=10.

Original entry on oeis.org

101, 10, 10, 101, 111, 111, 121, 212, 232, 323, 353, 535, 585, 858, 938, 1393, 1523, 2251, 2461, 3644, 3984, 5895, 6445, 9539, 10429, 15434, 16874, 24973, 27303, 40407, 44177, 65380, 71480, 105787, 115657, 171167, 187137, 276954, 302794, 448121, 489931
Offset: 1

Author

Mark Dols, Aug 18 2010

Keywords

Comments

Generalization of A115339.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,1},{101,10,10,101},50] (* Paolo Xausa, Jan 04 2024 *)
  • PARI
    Vec(-x*(91*x^3-91*x^2+10*x+101)/(x^4+x^2-1) + O(x^100)) \\ Colin Barker, Oct 03 2015
    
  • PARI
    a(n) = if(n==1||n==4, 101, if(n==2||n==3, 10, a(n-2)+a(n-4))); \\ Altug Alkan, Oct 03 2015

Formula

G.f.: -x*(91*x^3-91*x^2+10*x+101) / (x^4+x^2-1). Colin Barker, Oct 03 2015

A179980 a(n) = 10*a(n-1) - (-1)^n * n, a(1) = 1.

Original entry on oeis.org

1, 8, 83, 826, 8265, 82644, 826447, 8264462, 82644629, 826446280, 8264462811, 82644628098, 826446280993, 8264462809916, 82644628099175, 826446280991734, 8264462809917357, 82644628099173552, 826446280991735539, 8264462809917355370, 82644628099173553721
Offset: 1

Author

Mark Dols, Aug 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,19,10},{1,8,83},20] (* Harvey P. Dale, Nov 17 2014 *)

Formula

From R. J. Mathar, Aug 06 2010: (Start)
a(n) = +8*a(n-1) +19*a(n-2) +10*a(n-3).
G.f.: -x/((10*x-1)*(1+x)^2).
a(n) = (10^(n+1) -11*n*(-1)^n -10*(-1)^n)/121. (End)

A180175 Diagonal sums of A164844.

Original entry on oeis.org

1, 10, 101, 1011, 10112, 101123, 1011235, 10112358, 101123593, 1011235951, 10112359544, 101123595495, 1011235955039, 10112359550534, 101123595505573, 1011235955056107, 10112359550561680, 101123595505617787, 1011235955056179467, 10112359550561797254
Offset: 1

Author

Mark Dols, Aug 15 2010

Keywords

Comments

Sums are built along inclined lines through the triangle with (1,2)-steps in the (row,column) indices. - R. J. Mathar, Aug 19 2010

Examples

			From _R. J. Mathar_, Aug 19 2010: (Start)
One example is a(5), the sum of numbers in parentheses:
  1;
  1, 10;
  (1), 11, 100;
  1, 12, (111) ; 1000;;
  1, 13, 123 ; 1111, (10000); (End)
		

Crossrefs

Formula

From R. J. Mathar, Aug 19 2010: (Start)
G.f.: ( 1-x ) / ( (10*x-1)*(x^2+x-1) ).
a(n) = +11*a(n-1) -9*a(n-2) -10*a(n-3).
a(n) = (90*10^n -A022100(n))/89. (End)

Extensions

More terms from R. J. Mathar, Aug 19 2010

A180053 a(1)=1, a(2)=101, a(n) = 1001*a(n-1) for n > 2.

Original entry on oeis.org

1, 101, 101101, 101202101, 101303303101, 101404606404101, 101506011010505101, 101607517021515606101, 101709124538537121707101, 101810833663075658828808101, 101912644496738734487636909101, 102014557141235473222124546010101
Offset: 1

Author

Mark Dols, Aug 08 2010

Keywords

Examples

			In a column:
                1
              101
           101101
        101202101
     101303303101
  101404606404101
		

Crossrefs

Cf. A093645.

Programs

Formula

G.f.: x(1-900*x)/(1-1001*x). - Philippe Deléham, Oct 08 2011

A179907 Numerators in the approximation of sqrt(2) satisfying the recurrence: a(n)= [a(n-1)*a(n-2)+2]/[a(n-1)+a(n-2)] with a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 3, 7, 41, 577, 47321, 54608393, 5168247530883, 564459384575477049359
Offset: 1

Author

Mark Dols, Aug 01 2010

Keywords

Crossrefs