cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173433 a(n) = (A000045(n)+A173432(n))/2.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 7, 11, 18, 28, 45, 72, 117, 189, 306, 494, 799, 1292, 2091, 3383, 5474, 8856, 14329, 23184, 37513, 60697, 98210, 158906, 257115, 416020, 673135, 1089155, 1762290, 2851444, 4613733, 7465176, 12078909, 19544085, 31622994, 51167078, 82790071, 133957148
Offset: 1

Views

Author

Mark Dols, Feb 18 2010

Keywords

Comments

Also the NW-SE diagonal sums of A173398.

Crossrefs

Programs

  • Maple
    f:=gfun:-rectoproc({-a(n) - a(n + 1) + a(n + 2) - a(n + 3) - a(n + 4) + a(n + 5) + 1, a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 2, a(5) = 3},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Jun 11 2019
  • Mathematica
    CoefficientList[Series[-x*(-1+x+x^4)/((x-1)*(1+x)*(x^2+x-1)*(x^2-x+1)),{x,0,42}],x] (* Georg Fischer, Jun 11 2019 *)

Formula

a(n) = 1/2-(-1)^n/6+A057079(n+4)/6+A000045(n)/2 with g.f. -x*(-1+x+x^4)/ ((x-1) * (1+x) * (x^2+x-1) * (x^2-x+1)). - R. J. Mathar, Mar 04 2010

Extensions

a(35) corrected by Georg Fischer, Jun 11 2019

A173434 a(n) = (A000045(n)-A173432(n))/2.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 6, 10, 16, 27, 44, 72, 116, 188, 304, 493, 798, 1292, 2090, 3382, 5472, 8855, 14328, 23184, 37512, 60696, 98208, 158905, 257114, 416020, 673134, 1089154, 1762288, 2851443, 4613732, 7465176
Offset: 1

Views

Author

Mark Dols, Feb 18 2010

Keywords

Comments

Also the NW-SE diagonal sums of A173402.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4/((x-1)(1+x)(x^2-x+1)(x^2+x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-2,2,0,-1},{0,0,0,0,1,2},40] (* Harvey P. Dale, Jun 29 2021 *)

Formula

a(n) + A173433(n) = A000045(n).
a(n)= 2*a(n-1) -2*a(n-3) +2*a(n-4) -a(n-6). - R. J. Mathar, Mar 01 2010
G.f.: x^4 / ( (x-1)*(1+x)*(x^2-x+1)*(x^2+x-1) ). - R. J. Mathar, Nov 03 2016
Showing 1-2 of 2 results.