cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A198762 a(n) = 3*5^n - 1 = 2*A057651(n).

Original entry on oeis.org

2, 14, 74, 374, 1874, 9374, 46874, 234374, 1171874, 5859374, 29296874, 146484374, 732421874, 3662109374, 18310546874, 91552734374, 457763671874, 2288818359374, 11444091796874, 57220458984374, 286102294921874, 1430511474609374, 7152557373046874, 35762786865234374
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [(3*5^n-1): n in [0..30]];
  • Mathematica
    CoefficientList[Series[2*(1 + x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    LinearRecurrence[{6,-5},{2,14},30] (* Harvey P. Dale, Mar 19 2013 *)

Formula

a(n) = 5*a(n-1) + 4.
a(n) = 6*a(n-1) - 5*a(n-2), n > 1.
G.f.: 2*(1 + x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013
E.g.f.: exp(x)*(3*exp(4*x) - 1). - Elmo R. Oliveira, Mar 29 2025

A112468 Riordan array (1/(1-x), x/(1+x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A040000. Diagonal sums are A112469. Inverse is A112467. Row sums of k-th power are 1, k+1, k+1, k+1, .... Note that C(n,k) = Sum_{j=0..n-k} C(n-j-1, n-k-j).
Equals row reversal of triangle A112555 up to sign, where log(A112555) = A112555 - I. Unsigned row sums equals A052953 (Jacobsthal numbers + 1). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms. - Paul D. Hanna, Jan 20 2006
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively (see the square array in A112739). - Philippe Deléham, Feb 22 2014

Examples

			Triangle starts
  1;
  1,  1;
  1,  0,  1;
  1,  1, -1,  1;
  1,  0,  2, -2,  1;
  1,  1, -2,  4, -3,  1;
  1,  0,  3, -6,  7, -4,  1;
Matrix log begins:
  0;
  1,  0;
  1,  0,  0;
  1,  1, -1,  0;
  1,  1,  1, -2,  0;
  1,  1,  1,  1, -3,  0; ...
Production matrix begins
  1,  1,
  0, -1,  1,
  0,  0, -1,  1,
  0,  0,  0, -1,  1,
  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0,  0, -1,  1.
- _Paul Barry_, Apr 08 2011
		

Crossrefs

Cf. A174294, A174295, A174296, A174297. - Mats Granvik, Mar 15 2010
Cf. A072547 (central terms), A112555 (reversed rows), A112465, A052953, A112556, A112739, A119258.
See A279006 for another version.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        else return T(n-1,k-1) - T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Haskell
    a112468 n k = a112468_tabl !! n !! k
    a112468_row n = a112468_tabl !! n
    a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1]
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return T(n-1,k-1) - T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hypergeom( [1,n+1],[k+2],m)/(k+1)!; A112468 := (n,k) -> T(n,n-k,-1);
    seq(print(seq(simplify(A112468(n,k)),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x),n,X),k,Y)} \\ Paul D. Hanna, Jan 20 2006
    
  • PARI
    T(n,k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or n<0): return 0
        elif (k==0 or k==n): return 1
        else: return T(n-1, k-1) - T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

A056450 a(n) = (3*2^n - (-2)^n)/2.

Original entry on oeis.org

1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296
Offset: 0

Views

Author

Keywords

Comments

Number of palindromes of length n using a maximum of four different symbols.
Number of achiral rows of n colors using up to four colors. - Robert A. Russell, Nov 09 2018
Interleaving of A000302 and 4*A000302.
Unsigned version of A141125.
Binomial transform is A164907. Second binomial transform is A164908. Third binomial transform is A057651. Fourth binomial transform is A016129.

Examples

			At length n=1 there are a(1)=4 palindromes, A, B, C, D.
At length n=2, there are a(2)=4 palindromes, AA, BB, CC, DD.
At length n=3, there are a(3)=16 palindromes, AAA, BBB, CCC, DDD, ABA, BAB, ... , CDC, DCD.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=4 of A321391.
Cf. A016116.
Essentially the same as A213173.
Cf. A000302 (oriented), A032121 (unoriented), A032087(n>1) (chiral).

Programs

  • Magma
    [ (3*2^n-(-2)^n)/2: n in [0..31] ];
    
  • Magma
    [4^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    Table[4^Ceiling[n/2], {n,0,40}] (* or *)
    CoefficientList[Series[(1 + 4 x)/((1 + 2 x) (1 - 2 x)), {x, 0, 31}], x] (* or *)
    LinearRecurrence[{0, 4}, {1, 4}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n)=4^((n+1)\2) \\ Charles R Greathouse IV, Apr 08 2012
    
  • PARI
    a(n)=(3*2^n-(-2)^n)/2 \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = 4^floor((n+1)/2).
a(n) = 4*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1+4*x) / (1-4*x^2). - R. J. Mathar, Jan 19 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 4*abs(A164111(n-1)). - R. J. Mathar, Jan 19 2011
a(n) = C(4,0)*A000007(n) + C(4,1)*A057427(n) + C(4,2)*A056453(n) + C(4,3)*A056454(n) + C(4,4)*A056455(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Sep 29 2019

A061801 a(n) = (7*6^n - 2)/5.

Original entry on oeis.org

1, 8, 50, 302, 1814, 10886, 65318, 391910, 2351462, 14108774, 84652646, 507915878, 3047495270, 18284971622, 109709829734, 658258978406, 3949553870438, 23697323222630, 142183939335782, 853103636014694
Offset: 0

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

Sum of n-th row of triangle of powers of 6: 1; 1 6 1; 1 6 36 6 1; 1 6 36 216 36 6 1; ....

Examples

			a(2) = 50 = 1 + 6 + 36 + 6 + 1.
G.f. = 1 + 8*x + 50*x^2 + 302*x^3 + 1814*x^4 + 10886*x^5 + 65318*x^6 + ...
		

Crossrefs

Programs

  • Maple
    restart:g:=(1+x)/(1-6*x)/(1-x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009
  • PARI
    { for (n=0, 200, write("b061801.txt", n, " ", (7*6^n - 2)/5) ) } \\ Harry J. Smith, Jul 28 2009

Formula

G.f.: (1+x)/(1-6*x)/(1-x) [Zerinvary Lajos, Jan 11 2009]
a(n) = 6*a(n-1) + 2, a(0) = 1. - Philippe Deléham, Feb 23 2014
a(n) = Sum_{k=0..n} A112468(n,k)*7^k. - Philippe Deléham, Feb 23 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, May 28 2001.
Better description from Dean Hickerson, Jun 06 2001
Divided g.f. by x to match the offset. - Philippe Deléham, Feb 23 2014

A112739 Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 1, 5, 10, 7, 2, 1, 1, 6, 17, 22, 9, 2, 1, 1, 7, 26, 53, 46, 11, 2, 1, 1, 8, 37, 106, 161, 94, 13, 2, 1, 1, 9, 50, 187, 426, 485, 190, 15, 2, 1, 1, 10, 65, 302, 937, 1706, 1457, 382, 17, 2, 1, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 19
Offset: 0

Views

Author

Paul Barry, Sep 16 2005

Keywords

Comments

Rows of the square array have g.f. (1+x)/((1-x)(1-kx)). They are the partial sums of the coordination sequences for the infinite tree of valency k. Row sums are A112740.
Rows of the square array are successively: A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, A238276, A138894, A090843, A199023. - Philippe Deléham, Feb 22 2014

Examples

			As a square array, rows begin
1,1,1,1,1,1,... (A000012)
1,2,2,2,2,2,... (A040000)
1,3,5,7,9,11,... (A005408)
1,4,10,22,46,94,... (A033484)
1,5,17,53,161,485,... (A048473)
1,6,26,106,426,1706,... (A020989)
1,7,37,187,937,4687,... (A057651)
1,8,50,302,1814,10886,... (A061801)
As a number triangle, rows start
1;
1,1;
1,2,1;
1,3,2,1;
1,4,5,2,1;
1,5,10,7,2,1;
		

References

  • L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.
  • L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000).

Crossrefs

Formula

As a square array read by antidiagonals, T(n, k)=sum{j=0..k, (2-0^j)*(n-1)^(k-j)}; T(n, k)=(n(n-1)^k-2)/(n-2), n<>2, T(2, n)=2n+1; T(n, k)=sum{j=0..k, (n(n-1)^j-0^j)/(n-1)}, j<>1. As a triangle read by rows, T(n, k)=if(k<=n, sum{j=0..k, (2-0^j)*(n-k-1)^(k-j)}, 0).

A164908 a(n) = (3*4^n - 0^n)/2.

Original entry on oeis.org

1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 0

Views

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Binomial transform of A164907. Inverse binomial transform of A057651.
Partial sums are in A083420.
Decimal representations of the n-th iterations of elementary cellular automata rules 14, 46, 142 and 174 generate this sequence (see A266298 and A266299). - Karl V. Keller, Jr., Aug 31 2021

Crossrefs

Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1+2*x)/(1-4*x).
a(n) = floor(6*4^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
E.g.f.: (3*exp(4*x) - 1)/2. - Elmo R. Oliveira, Mar 31 2025

A238275 a(n) = (4*7^n - 1)/3.

Original entry on oeis.org

1, 9, 65, 457, 3201, 22409, 156865, 1098057, 7686401, 53804809, 376633665, 2636435657, 18455049601, 129185347209, 904297430465, 6330082013257, 44310574092801, 310174018649609, 2171218130547265, 15198526913830857, 106389688396816001, 744727818777712009
Offset: 0

Views

Author

Philippe Deléham, Feb 21 2014

Keywords

Comments

Sum of n-th row of triangle of powers of 7: 1; 1 7 1; 1 7 49 7 1; 1 7 49 343 49 7 1; ...
Number of cubes in the crystal structure cubic carbon CCC(n+1), defined in the Baig et al. and in the Gao et al. references. - Emeric Deutsch, May 28 2018

Examples

			a(0) = 1;
a(1) = 1 + 7 + 1 = 9;
a(2) = 1 + 7 + 49 + 7 + 1 = 65;
a(3) = 1 + 7 + 49 + 343 + 49 + 7 + 1 = 457; etc.
		

Crossrefs

Cf. Similar sequences: A151575, A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, this sequence, A238276, A138894, A090843, A199023.

Programs

Formula

G.f.: (1+x)/((1-x)*(1-7*x)).
a(n) = 7*a(n-1) + 2, a(0) = 1.
a(n) = 8*a(n-1) - 7*a(n-2), a(0) = 1, a(1) = 9.
a(n) = Sum_{k=0..n} A112468(n,k)*8^k.
E.g.f.: exp(x)*(4*exp(6*x) - 1)/3. - Stefano Spezia, Feb 12 2025

A238276 a(n) = (9*8^n - 2)/7.

Original entry on oeis.org

1, 10, 82, 658, 5266, 42130, 337042, 2696338, 21570706, 172565650, 1380525202, 11044201618, 88353612946, 706828903570, 5654631228562, 45237049828498, 361896398627986, 2895171189023890, 23161369512191122, 185290956097528978, 1482327648780231826
Offset: 0

Views

Author

Philippe Deléham, Feb 21 2014

Keywords

Comments

Sum of n-th row of triangle of powers of 8: 1; 1 8 1; 1 8 64 8 1; 1 8 64 512 64 8 1; ...

Examples

			a(0) = 1;
a(1) = 1 + 8 + 1 = 10;
a(2) = 1 + 8 + 64 + 8 + 1 = 82;
a(3) = 1 + 8 + 64 + 512 + 64 + 8 + 1 = 658; etc.
		

Crossrefs

Cf. Similar sequences: A151575, A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, this sequence, A138894, A090843, A199023.

Programs

Formula

G.f.: (1+x)/((1-x)*(1-8*x)).
a(n) = 8*a(n-1) + 2, a(0) = 1.
a(n) = 9*a(n-1) - 8*a(n-2), a(0) = 1, a(1) = 10.
a(n) = Sum_{k=0..n} A112468(n,k)*9^k.

Extensions

Corrected by Vincenzo Librandi, Feb 23 2014

A097162 a(n) = Sum_{k=0..n} C(floor((n+1)/2),floor((k+1)/2))*2^k.

Original entry on oeis.org

1, 3, 7, 21, 37, 123, 187, 681, 937, 3663, 4687, 19341, 23437, 100803, 117187, 520401, 585937, 2667543, 2929687, 13599861, 14648437, 69047883, 73242187, 349433721, 366210937, 1763945823, 1831054687, 8886837981, 9155273437, 44702625363
Offset: 0

Views

Author

Paul Barry, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    A097162:=n->add(binomial(floor((n+1)/2),floor((k+1)/2))*2^k, k=0..n): seq(A097162(n), n=0..30); # Wesley Ivan Hurt, Sep 18 2014
  • Mathematica
    LinearRecurrence[{1,9,-9,-20,20},{1,3,7,21,37},50] (* Vincenzo Librandi, Jan 30 2012 *)

Formula

G.f.: (1+2*x-5*x^2-4*x^3)/((1-x)*(1-4*x^2)*(1-5*x^2)).
a(n) = (3/4-3*sqrt(5)/4)*(-sqrt(5))^n +(3/4+3*sqrt(5)/4)*(sqrt(5))^n-(2^n-(-2)^n)-1/2.
a(2*n) = A057651(n); a(2*n+1)=3*A097165(n).
a(n+5) = 20*a(n)-20*a(n+1)-9*a(n+2)+9*a(n+3)+a(n+4). - Robert Israel, Sep 18 2014

A119727 Triangular array: T(n,k) = T(n,n) = 1, T(n,k) = 5*T(n-1, k-1) + 2*T(n-1, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 19, 37, 1, 1, 43, 169, 187, 1, 1, 91, 553, 1219, 937, 1, 1, 187, 1561, 5203, 7969, 4687, 1, 1, 379, 4057, 18211, 41953, 49219, 23437, 1, 1, 763, 10009, 56707, 174961, 308203, 292969, 117187, 1, 1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1
Offset: 1

Views

Author

Zerinvary Lajos, Jun 14 2006

Keywords

Comments

Second column is A048488. Second diagonal is A057651.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    7,     1;
  1,   19,    37,      1;
  1,   43,   169,    187,      1;
  1,   91,   553,   1219,    937,       1;
  1,  187,  1561,   5203,   7969,    4687,       1;
  1,  379,  4057,  18211,  41953,   49219,   23437,       1;
  1,  763, 10009,  56707, 174961,  308203,  292969,  117187,      1;
  1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1;
		

References

  • TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return 5*T(n-1,k-1) + 2*T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=1 and k=n then 1
        else 5*T(n-1, k-1) + 2*T(n-1, k)
          fi
    end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 5*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==1 || k==n, 1, 5*T(n-1,k-1) + 2*T(n-1,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1 or k==n): return 1
        else: return 5*T(n-1, k-1) + 2*T(n-1, k)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019

Extensions

Edited by Don Reble, Jul 24 2006
Showing 1-10 of 24 results. Next