a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (
A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). -
Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). -
Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). -
Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. -
Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. -
Benoit Cloitre, May 24 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of
A130125. -
Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. -
Paul Barry, Oct 07 2004
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 =
A005578(n+1) - 1. -
Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (
A059570) with "1-n" (
A024000), treating the result as if offset was 0. -
Graeme McRae, Jul 12 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle
A135228. -
Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [
A005578(n),
A001045(n), a(n-1)]. -
Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). -
Milan Janjic, Apr 26 2009
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. -
Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. -
Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). -
Sergei N. Gladkovskii, Nov 21 2011
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. -
Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. -
Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). -
Sergei N. Gladkovskii, May 21 2013
a(n) = (2^(n+1) - 2 + (n mod 2))/3. -
Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). -
Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). -
Paul Toms, Mar 18 2015
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. -
Yuchun Ji, May 22 2023
Comments