Ran Pan has authored 46 sequences. Here are the ten most recent ones:
A274764
Number of linear extensions of the one-level grid poset G[(1^n), (1^(n-1)), (1^(n-1))].
Original entry on oeis.org
1, 20, 962, 75080, 8133732, 1127589120, 190416834360, 37902843124640, 8686847271179984, 2252403871470920960, 651771144516905730048, 208193858907016903262208, 72758882836839703611703296, 27613191886304138293279719424, 11308972154842887758316960743424, 4971172331379604809443266242019328
Offset: 1
A274763
Number of linear extensions of the one-level grid poset G[(1^n), (1^(n-1)), (0^(n-1))].
Original entry on oeis.org
1, 10, 215, 7200, 328090, 18914190, 1318595475, 107813147200, 10112867995550, 1070215246700100, 126122386636230950, 16378717184245443000, 2323753119238888045500, 357594668486650175355750, 59323244552378848484536875, 10553747415214416889115286000, 2004246729406751177924041663750, 404685181230584369889138573637500, 86569650968075614116679243211951250, 19558042902565983702641321883519060000
Offset: 1
-
N := 100;
ff[1] := y-x;
for n from 1 to N-1 do
ff[n+1] := simplify((y-x)*int(int((x-u)*subs(x=u,y=v,ff[n]),v=u..y),u=0..x));
end:
for n from 1 to N do
a[n] := factorial(4*n-1)*int(int(ff[n],x=0..y),y=0..1);
end:
seq(a[n],n=1..10);
# Michael Wallner, Feb 14 2024
A274646
Number of linear extensions of the one-level grid poset G[(3^n), (0^(n-1)), (0^(n-1))].
Original entry on oeis.org
1, 70, 26599, 29609650, 72574079902, 332014782982540, 2545213373338499072, 30302687687176712355840, 529556871638491591748878336, 13004213964445490176628310933504, 433440210434110194677894532074307584
Offset: 1
A274645
Number of linear extensions of the one-level grid poset G[(2^n), (0^(n-1)), (0^(n-1))].
Original entry on oeis.org
1, 20, 1301, 177260, 41385102, 14760468600, 7465847167005, 5083351577582300, 4483012419041095680, 4971032496120058085376, 6769339545226095791964160, 11105730970797793499164966912, 21604722570792867452576610648064
Offset: 1
A274644
Number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))].
Original entry on oeis.org
1, 6, 71, 1266, 30206, 902796, 32420011, 1359292626, 65164480466, 3515569641156, 210779736073446, 13903319821066836, 1000559812125494076, 78012524487061315416, 6550837823204594551731, 589404446176366002280146, 56568586570039148217467786, 5768723174387469795772704276, 622900652040379217092492454866
Offset: 1
- Michael Wallner, Table of n, a(n) for n = 1..100
- Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
- Ran Pan, Problem 1, Project P.
- Ran Pan, Algorithmic Solution to Problem 1 (and linear extensions of general one-level grid-like posets), Project P.
-
M := 20;
for k from 3 to 3+2*M do
bb[1,k] := 1;
end:
for n from 2 to M do
for k from 3 to 3+2*M-2*(n-1) do
bb[n,k] := sum(i*bb[n-1,i+2],i=1..k);
end;
end:
seq(bb[n,3],n=1..10);
N := 100:
f[1] := y-x;
for n from 1 to N-1 do
f[n+1] := (y-x)*int(int(subs(x=v,y=w,f[n]),w=v..y),v=0..x);
end:
for n from 1 to N do
aa[n] := factorial(3*n)*int(int(f[n],x=0..y),y=0..1);
end:
seq(aa[n],n=1..10);
# Michael Wallner, Feb 13 2024
A268601
Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Original entry on oeis.org
0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528
Offset: 0
A268600
Expansion of 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Original entry on oeis.org
1, 2, 4, 12, 36, 132, 456, 1752, 6340, 24660, 91224, 356776, 1337896, 5250728, 19877904, 78209712, 298176516, 1175437428, 4505865144, 17789574792, 68490100536, 270739425528, 1046041377264, 4139198745552, 16039426479336, 63522770785032, 246761907761776, 977995685565072, 3807202080396240, 15098691607042000, 58884954519908896
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 12*x^3 + 36*x^4 + 132*x^5 + 456*x^6 + ... - _Michael Somos_, May 16 2022
-
CoefficientList[ Series[1/(2 Sqrt[1 - 4x]) + 1/(4 - 2 Sqrt[1 + 4x]), {x, 0, 25}], x] (* Robert G. Wilson v, Nov 24 2016 *)
-
my(x = 'x + O('x^40)); Vec(1/(2*sqrt(1-4*x)) + 1/(4 - 2*sqrt(1+4*x))) \\ Michel Marcus, Feb 11 2016
A268598
Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
A268599
Expansion of 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 8, 60, 294, 1180, 4200, 13776, 42560, 125568, 357120, 985600, 2652672, 6988800, 18077696, 46018560, 115507200, 286326784, 701890560, 1703411712, 4096655360, 9771417600, 23132110848, 54384394240, 127049662464, 295069286400, 681574400000
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (10,-40,80,-80,32).
-
CoefficientList[Series[2 x^6 (4 - 10 x + 7 x^2)/(1 - 2 x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
-
concat(vector(6), Vec(2*x^6*(4-10*x+7*x^2)/(1-2*x)^5 + O(x^100))) \\ Colin Barker, Feb 08 2016
A268587
Expansion of x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.
Original entry on oeis.org
0, 0, 0, 0, 5, 24, 85, 264, 760, 2080, 5488, 14080, 35328, 87040, 211200, 505856, 1198080, 2809856, 6533120, 15073280, 34537472, 78643200, 178061312, 401080320, 899153920, 2006974464, 4461690880, 9881780224, 21810380800, 47982837760, 105243475968
Offset: 0
-
Concatenation([0,0,0,0], List([3..40], n-> 2^(n-7)*(n-3)*(n+4)*(n+11)/3 )); # G. C. Greubel, May 24 2019
-
R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(5-16*x+13*x^2)/(1-2*x)^4 )); // G. C. Greubel, May 24 2019
-
F:= gfun:-rectoproc({16*a(n)-32*a(n+1)+24*a(n+2)-8*a(n+3)+a(n+4), a(0)=0, a(1)=0,a(2)=0,a(3)=0,a(4)=5,a(5)=24,a(6)=85},a(n),remember):
map(F, [$0..40]); # Robert Israel, Feb 07 2016
-
CoefficientList[Series[x^4 (5 -16x +13x^2)/(1-2x)^4, {x, 0, 40}], x] (* Michael De Vlieger, Feb 08 2016 *)
LinearRecurrence[{8,-24,32,-16},{0,0,0,0,5,24,85},40] (* Harvey P. Dale, Feb 22 2025 *)
-
concat(vector(4), Vec(x^4*(5-16*x+13*x^2)/(1-2*x)^4 + O(x^40))) \\ Colin Barker, Feb 08 2016
-
(x^4*(5-16*x+13*x^2)/(1-2*x)^4).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
Comments