cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ran Pan

Ran Pan's wiki page.

Ran Pan has authored 46 sequences. Here are the ten most recent ones:

A274764 Number of linear extensions of the one-level grid poset G[(1^n), (1^(n-1)), (1^(n-1))].

Original entry on oeis.org

1, 20, 962, 75080, 8133732, 1127589120, 190416834360, 37902843124640, 8686847271179984, 2252403871470920960, 651771144516905730048, 208193858907016903262208, 72758882836839703611703296, 27613191886304138293279719424, 11308972154842887758316960743424, 4971172331379604809443266242019328
Offset: 1

Author

Ran Pan, Jul 05 2016

Keywords

Comments

The definition of a one-level grid poset can be found in the Pan links. The number of linear extensions of the one-level grid poset G[(0^n), (0^(n-1)), (0^(n-1))] is given by Catalan number A000108(n), the number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))] is given by A274644(n) and the number of linear extensions of the one-level grid poset G[(1^n), (1^(n-1)), (0^(n-1))] is given by A274763(n).

Crossrefs

A274763 Number of linear extensions of the one-level grid poset G[(1^n), (1^(n-1)), (0^(n-1))].

Original entry on oeis.org

1, 10, 215, 7200, 328090, 18914190, 1318595475, 107813147200, 10112867995550, 1070215246700100, 126122386636230950, 16378717184245443000, 2323753119238888045500, 357594668486650175355750, 59323244552378848484536875, 10553747415214416889115286000, 2004246729406751177924041663750, 404685181230584369889138573637500, 86569650968075614116679243211951250, 19558042902565983702641321883519060000
Offset: 1

Author

Ran Pan, Jul 05 2016

Keywords

Comments

The definition of a one-level grid poset can be found in the Pan links. The number of linear extensions of the one-level grid poset G[(0^n), (0^(n-1)), (0^(n-1))] is given by Catalan number A000108(n) and the number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))] is given by A274644(n).

Crossrefs

Programs

  • Maple
    N := 100;
    ff[1] := y-x;
    for n from 1 to N-1 do
       ff[n+1] := simplify((y-x)*int(int((x-u)*subs(x=u,y=v,ff[n]),v=u..y),u=0..x));
    end:
    for n from 1 to N do
       a[n] := factorial(4*n-1)*int(int(ff[n],x=0..y),y=0..1);
    end:
    seq(a[n],n=1..10);
    # Michael Wallner, Feb 14 2024

Formula

a(n) = (4*n-1)!*Integral_{y=0..1} Integral_{x=0..y} f_{n}(x,y) dx dy where f_{n+1}(x,y) = (y-x)*Integral_{u=0..x} Integral_{v=u..y} (x-u)*f_{n}(u,v) dv du for n>=1 and f_{1}(x,y) = y-x (Derived using the density method; see [Banderier, Wallner 2021]). - Michael Wallner, Feb 14 2024

Extensions

Corrected and extended by Michael Wallner, Feb 14 2024

A274646 Number of linear extensions of the one-level grid poset G[(3^n), (0^(n-1)), (0^(n-1))].

Original entry on oeis.org

1, 70, 26599, 29609650, 72574079902, 332014782982540, 2545213373338499072, 30302687687176712355840, 529556871638491591748878336, 13004213964445490176628310933504, 433440210434110194677894532074307584
Offset: 1

Author

Ran Pan, Jun 30 2016

Keywords

Comments

The definition of a one-level grid poset can be found in the Pan links. The number of linear extensions of one-level grid poset G[(0^n), (0^(n-1)), (0^(n-1))] is given by Catalan number A000108(n), the number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))] is given by A274644(n) and number of linear extensions of the one-level grid poset G[(2^n), (0^(n-1)), (0^(n-1))] is given by A274645(n).

Crossrefs

A274645 Number of linear extensions of the one-level grid poset G[(2^n), (0^(n-1)), (0^(n-1))].

Original entry on oeis.org

1, 20, 1301, 177260, 41385102, 14760468600, 7465847167005, 5083351577582300, 4483012419041095680, 4971032496120058085376, 6769339545226095791964160, 11105730970797793499164966912, 21604722570792867452576610648064
Offset: 1

Author

Ran Pan, Jun 30 2016

Keywords

Comments

The definition of a one-level grid poset can be found in the Pan links. The number of linear extensions of the one-level grid poset G[(0^n), (0^(n-1)), (0^(n-1))] is given by the Catalan number A000108(n) and the number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))] is given by A274644(n).

Crossrefs

A274644 Number of linear extensions of the one-level grid poset G[(1^n), (0^(n-1)), (0^(n-1))].

Original entry on oeis.org

1, 6, 71, 1266, 30206, 902796, 32420011, 1359292626, 65164480466, 3515569641156, 210779736073446, 13903319821066836, 1000559812125494076, 78012524487061315416, 6550837823204594551731, 589404446176366002280146, 56568586570039148217467786, 5768723174387469795772704276, 622900652040379217092492454866
Offset: 1

Author

Ran Pan, Jun 30 2016

Keywords

Comments

The definition of a one-level grid poset can be found in the Pan links. The number of linear extensions of the one-level grid poset G[(0^n), (0^(n-1)), (0^(n-1))] is given by Catalan number A000108(n).

Crossrefs

Programs

  • Maple
    M := 20;
    for k from 3 to 3+2*M do
       bb[1,k] := 1;
    end:
    for n from 2 to M do
    for k from 3 to 3+2*M-2*(n-1) do
       bb[n,k] := sum(i*bb[n-1,i+2],i=1..k);
    end;
    end:
    seq(bb[n,3],n=1..10);
    N := 100:
    f[1] := y-x;
    for n from 1 to N-1 do
       f[n+1] := (y-x)*int(int(subs(x=v,y=w,f[n]),w=v..y),v=0..x);
    end:
    for n from 1 to N do
       aa[n] := factorial(3*n)*int(int(f[n],x=0..y),y=0..1);
    end:
    seq(aa[n],n=1..10);
    # Michael Wallner, Feb 13 2024

Formula

From Michael Wallner, Feb 13 2024: (Start)
a(n) = b(n,3) in b(n,k) = Sum_{i=1..k} i*b(n-1,i+2) for n>0 and k>=3 with initial conditions b(1,k) = 1 for all k.
a(n) = (3*n)!*Integral_{y=0..1} Integral_{x=0..y} f_{n}(x,y) dx dy where f_{n+1}(x,y) = (y-x)*Integral_{v=0..x} Integral_{w=v..y} f_{n}(v,w) dw dv for n>=1 and f_{1}(x,y) = y-x (Derived using the density method; see [Banderier, Wallner 2021]). (End)

Extensions

All terms starting with a(13) corrected by Michael Wallner, Feb 13 2024

A268601 Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528
Offset: 0

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is odd. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    x = 'x + O('x^30); concat(vector(2), Vec(1/(2*sqrt(1-4*x)) - 1/(4 - 2*sqrt(1+4*x)))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268600(n).
G.f.: 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: 3*n*(n-1)*a(n) -8*(n-1)*(5*n-12)*a(n-1) +4*(28*n-73)*a(n-2) +160*(2*n-5)*(2*n-7)*a(n-3) -192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020

A268600 Expansion of 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

1, 2, 4, 12, 36, 132, 456, 1752, 6340, 24660, 91224, 356776, 1337896, 5250728, 19877904, 78209712, 298176516, 1175437428, 4505865144, 17789574792, 68490100536, 270739425528, 1046041377264, 4139198745552, 16039426479336, 63522770785032, 246761907761776, 977995685565072, 3807202080396240, 15098691607042000, 58884954519908896
Offset: 0

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is even. Details can be found in Section 4.1 in Pan and Remmel's link.

Examples

			G.f. = 1 + 2*x + 4*x^2 + 12*x^3 + 36*x^4 + 132*x^5 + 456*x^6 + ... - _Michael Somos_, May 16 2022
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[1/(2 Sqrt[1 - 4x]) + 1/(4 - 2 Sqrt[1 + 4x]), {x, 0, 25}], x] (* Robert G. Wilson v, Nov 24 2016 *)
  • PARI
    my(x = 'x + O('x^40)); Vec(1/(2*sqrt(1-4*x)) + 1/(4 - 2*sqrt(1+4*x))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268601(n).
G.f.: 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: -3*n*(n-1)*a(n) +8*(n-1)*(5*n-12)*a(n-1) +4*(-28*n+73)*a(n-2) -160*(2*n-5)*(2*n-7)*a(n-3) +192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
a(n) = (-1)^n*A126984(n) + A268601(n). - Michael Somos, May 16 2022

A268598 Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928
Offset: 0

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly one east step above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    concat(vector(5), Vec((4-5*x)*x^5/(1-2*x)^4 + O(x^40))) \\ Michel Marcus, Feb 08 2016

Formula

G.f.: x^5*(4 - 5*x)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-7)*(n-4)*(n-3)*(n+3) for n>2.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. (End)

A268599 Expansion of 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 8, 60, 294, 1180, 4200, 13776, 42560, 125568, 357120, 985600, 2652672, 6988800, 18077696, 46018560, 115507200, 286326784, 701890560, 1703411712, 4096655360, 9771417600, 23132110848, 54384394240, 127049662464, 295069286400, 681574400000
Offset: 0

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly two easts step above y = x + 1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^6 (4 - 10 x + 7 x^2)/(1 - 2 x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
  • PARI
    concat(vector(6), Vec(2*x^6*(4-10*x+7*x^2)/(1-2*x)^5 + O(x^100))) \\ Colin Barker, Feb 08 2016

Formula

G.f.: 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.
a(n) = 2^(n-10)*(n-5)*(n-4)*(n^2+3*n+10) for n>3. - Colin Barker, Feb 08 2016

A268587 Expansion of x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 5, 24, 85, 264, 760, 2080, 5488, 14080, 35328, 87040, 211200, 505856, 1198080, 2809856, 6533120, 15073280, 34537472, 78643200, 178061312, 401080320, 899153920, 2006974464, 4461690880, 9881780224, 21810380800, 47982837760, 105243475968
Offset: 0

Author

Ran Pan, Feb 07 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • GAP
    Concatenation([0,0,0,0], List([3..40], n-> 2^(n-7)*(n-3)*(n+4)*(n+11)/3 )); # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0,0,0] cat Coefficients(R!( x^4*(5-16*x+13*x^2)/(1-2*x)^4 )); // G. C. Greubel, May 24 2019
    
  • Maple
    F:= gfun:-rectoproc({16*a(n)-32*a(n+1)+24*a(n+2)-8*a(n+3)+a(n+4), a(0)=0, a(1)=0,a(2)=0,a(3)=0,a(4)=5,a(5)=24,a(6)=85},a(n),remember):
    map(F, [$0..40]); # Robert Israel, Feb 07 2016
  • Mathematica
    CoefficientList[Series[x^4 (5 -16x +13x^2)/(1-2x)^4, {x, 0, 40}], x] (* Michael De Vlieger, Feb 08 2016 *)
    LinearRecurrence[{8,-24,32,-16},{0,0,0,0,5,24,85},40] (* Harvey P. Dale, Feb 22 2025 *)
  • PARI
    concat(vector(4), Vec(x^4*(5-16*x+13*x^2)/(1-2*x)^4 + O(x^40))) \\ Colin Barker, Feb 08 2016
    
  • Sage
    (x^4*(5-16*x+13*x^2)/(1-2*x)^4).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

G.f.: x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 6.
a(n) = 2^(n-7)*(n-3)*(n+4)*(n+11)/3 for n > 2. (End)
E.g.f.: (33 + 60*x + 39*x^2 + (-33 + 6*x + 15*x^2 + 2*x^3)*exp(2*x))/96. - G. C. Greubel, May 24 2019

Extensions

Typo in name and g.f. corrected by Georg Fischer, May 24 2019