cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael Wallner

Michael Wallner's wiki page.

Michael Wallner has authored 18 sequences. Here are the ten most recent ones:

A368164 Number of nondeterministic Dyck bridges of length 2*n.

Original entry on oeis.org

1, 7, 63, 583, 5407, 50007, 460815, 4231815, 38745279, 353832631, 3224323183, 29328492519, 266364307231, 2416023142423, 21890268365007, 198151683934023, 1792260214473087, 16199857938091383, 146342491104098607, 1321339563995562663, 11925412051760977887, 107590261672922633943
Offset: 0

Author

Michael Wallner, Dec 14 2023

Keywords

Comments

In nondeterministic walks (N-walks) the steps are sets and called N-steps. N-walks start at 0 and are concatenations of such N-steps such that all possible extensions are explored in parallel. The nondeterministic Dyck step set is { {-1}, {1}, {-1,1} }. Such an N-walk is called an N-bridge if it contains at least one trajectory that is a classical bridge, i.e., starts and ends at 0 (for more details see the de Panafieu-Wallner article).

Examples

			The a(1)=7 N-bridges of length 2 are
           /              /    /
/\,    ,  /\,    ,  /\,  / ,  /\
     \/        \/   \    \/   \/
                \    \         \
		

Crossrefs

Cf. A151281 (nondeterministic Dyck meanders), A368234 (nondeterministic Dyck excursions), A000244 (nondeterministic Dyck walks).

Formula

G.f.: (1-6*t)/(sqrt(1-8*t)*(1-9*t)).
From Joseph M. Shunia, May 09 2024: (Start)
a(n) = A089022(n) + Sum_{k=0..n-1} binomial(2*n, k)*2^(2*n-k).
a(n) = A000244(2*n) - Sum_{k=n+1..2*n} binomial(2*n, k)*2^(2*n-k+1). (End)

A368234 Number of nondeterministic Dyck excursions of length 2*n.

Original entry on oeis.org

1, 4, 28, 224, 1888, 16320, 143040, 1264128, 11230720, 100124672, 894785536, 8010072064, 71794294784, 644079468544, 5782109208576, 51934915067904, 466666751655936, 4194593964294144, 37711993926844416, 339119962067042304, 3049961818869989376, 27434013235435536384
Offset: 0

Author

Michael Wallner, Dec 18 2023

Keywords

Comments

In nondeterministic walks (N-walks) the steps are sets and called N-steps. N-walks start at 0 and are concatenations of such N-steps such that all possible extensions are explored in parallel. The nondeterministic Dyck step set is { {-1}, {1}, {-1,1} }. Such an N-walk is called an N-excursion if it contains at least one trajectory that is a classical excursion, i.e., never crosses the x-axis, and starts and ends at 0 (for more details see the de Panafieu-Wallner article).

Examples

			The a(1)=4 N-bridges of length 2 are
      /         /
/\,  /\,  /\,  /\
          \    \/
           \    \
		

Crossrefs

Cf. A151281 (Nondeterministic Dyck meanders), A368164 (Nondeterministic Dyck bridges), A000244 (Nondeterministic Dyck walks).

Formula

G.f.: (1-8*x-(1-12*x)*sqrt(1-8*x))/(8*x*(1-9*x)).

A331120 Number of non-isomorphic minimal deterministic finite automata with n transient states recognizing a finite binary language.

Original entry on oeis.org

1, 1, 6, 60, 900, 18480, 487560, 15824880, 612504240, 27619664640, 1425084870240, 82937356685760, 5381249970008640, 385518151040336640, 30248651895457718400, 2581418447382311243520, 238181756821410417488640, 23637327769847150582661120, 2511570244361817605178754560, 284573826857792109743033564160
Offset: 0

Author

Michael Wallner, Jan 10 2020

Keywords

Comments

Using parking functions, Priez obtained an exact enumerative formula for the number of non-isomorphic minimal deterministic finite automata (MADFA) with n states recognizing a finite language over an alphabet of size k > 0 (Priez, 2015). An exact generation of MADFAs is given by Almeida et al. (2008). In that paper, exact enumerative formulae for the number of MADFA with n states for 1 < n < 6 and any alphabet size are also presented. - Nelma Moreira, Mar 08 2021

Crossrefs

Cf. A059412 (minimal unary DFAs).
A082161 (2^(n-1)*A082161(n)) is an upper bound; furthermore these are not necessarily minimal but acyclic binary DFAs without (!) accepting states.
A288950 (2^(n-1)*A288950(n)) is a lower bound.

Formula

a(n) = b(n,n), where the sequence b(n,m) = 2*b(n,m-1) + (m+1)*b(n-1,m) - m*b(n-2,m-1) for n >= m > 1, b(n,1) = b(n,0) + 2*b(n-1,1) for n >= 1, b(n,0) = 1 for n >= 0.
For any k > 0, m(k,n) with m(k,1)=1 and s(2*m^k-1,n) = Sum_{t=1..n} (binomial(n-1,t-1) * s(2*(m+t)^k-t-1,n-t) * m(k,t)) where s(x,n) enumerates x-parking functions (Priez, 2015). - Nelma Moreira, Mar 08 2021

A307700 Number of evolutionary duplication-loss-histories with n leaves of the caterpillar species tree with 5 leaves.

Original entry on oeis.org

5, 69, 1230, 24843, 541315, 12426996, 296546600, 7292489761, 183702242491, 4719659859582, 123261298705663, 3263950145153931, 87452457544863592, 2366980142343757033, 64628573978046899555, 1778185743733577832862, 49254755849062502247446, 1372455474283175885070422
Offset: 1

Author

Michael Wallner, Apr 22 2019

Keywords

Comments

An evolutionary history of size n is an ordered rooted (incomplete) binary tree with n leaves describing the evolution of a gene family of a species in phylogenomics. The caterpillar species tree S of size k is a binary tree with k leaves, where any left child is a leaf. Any node of the history is associated to a unique node of S, where specifically every leaf is associated to a leaf of S. A history is created by the following process (note that intermediate trees in this process may not be valid histories): Start with a root node associated to the root of S. For a given tree in the growth process, choose a leaf and perform a duplication, speciation, or (speciation-)loss event. A duplication event creates two children both associated to the same node as its parent. A speciation or (speciation-)loss event can only occur if the node is associated to an internal node in S. In that case, a speciation event creates two children associated to the children of the node in S. A (speciation-)loss event creates only a left or right child, associated to the left or right child in S, respectively.

Examples

			The caterpillar species tree with 5 leaves is equal to
          a
         / \
        b   5
       / \
      c   4
     / \
    d   3
   / \
  1   2
For convenience the internal nodes are labeled by a,b,c,d, and the leaves by 1,2,3,4,5. The associated nodes in the histories will be denoted by the same labels.
The a(1)=5 histories with n=1 leaf are created by the following growth process:
          a     a     a     a    a
         /     /     /     /      \
        b     b     b     b        5
       /     /     /       \
      c     c     c         4
     /     /       \
    d     d         3
   /       \
  1         2
after four loss events each.
		

Crossrefs

Caterpillar species tree sequences: A000108 (1 leaf), A307696 (2 leaves), A307697 (3 leaves), A307698 (4 leaves).

Programs

  • PARI
    my(z = 'z + O('z^25), t = sqrt(1-4*z), u = sqrt(-5+6*t+4*z), v = sqrt(-t*u+3*t+3*u-4), w = sqrt(-t*v+3*t+3*v-4)); Vec(1/2-(1/2)*sqrt(-4-t*w+3*t+3*w)) \\ Michel Marcus, May 07 2019

Formula

G.f.: 1/2 - (1/2)*sqrt(-4 - t*w + 3*t + 3*w) where t = sqrt(1 - 4*z), u = sqrt(-5 + 6*t + 4*z), v = sqrt(-t*u + 3*t + 3*u - 4) and w = sqrt(-t*v + 3*t + 3*v - 4).

A307698 Number of evolutionary duplication-loss-histories with n leaves of the caterpillar species tree with 4 leaves.

Original entry on oeis.org

4, 39, 495, 7235, 115303, 1948791, 34379505, 626684162, 11722058693, 223870302588, 4349161774626, 85701267415112, 1709101664822416, 34432888701965454, 699810795294490974, 14331183304458656628, 295434131968070459359, 6125911207605272841753, 127680054133385458855845
Offset: 1

Author

Michael Wallner, Apr 22 2019

Keywords

Comments

An evolutionary history of size n is an ordered rooted (incomplete) binary tree with n leaves describing the evolution of a gene family of a species in phylogenomics. The caterpillar species tree S of size k is a binary tree with k leaves, where any left child is a leaf. Any node of the history is associated to a unique node of S, where specifically every leaf is associated to a leaf of S. A history is created by the following process (note that intermediate trees in this process may not be valid histories): Start with a root node associated to the root of S. For a given tree in the growth process, choose a leaf and perform a duplication, speciation, or (speciation-)loss event. A duplication event creates two children both associated to the same node as its parent. A speciation or (speciation-)loss event can only occur if the node is associated to an internal node in S. In that case, a speciation event creates two children associated to the children of the node in S. A (speciation-)loss event creates only a left or right child, associated to the left or right child in S, respectively.

Examples

			The caterpillar species tree with 4 leaves is equal to
        a
       / \
      b   4
     / \
    c   3
   / \
  1   2
For convenience the internal nodes are labeled by a,b,c, and the leaves by 1,2,3,4. The associated nodes in the histories will be denoted by the same labels.
The a(1)=4 histories with n=1 leaf are created by the following growth process:
        a     a     a    a
       /     /     /      \
      b     b     b        4
     /     /       \
    c     c         3
   /       \
  1         2
after three loss events each.
		

Crossrefs

Caterpillar species tree sequences: A000108 (1 leaf), A307696 (2 leaves), A307697 (3 leaves), A307700 (5 leaves).

Programs

  • PARI
    my(z = 'z + O('z^25), t = sqrt(1-4*z), u = sqrt(-5+6*t+4*z), v = sqrt(-t*u+3*t+3*u-4)); Vec(1/2-(1/2)*sqrt(-4-t*v+3*t+3*v)) \\ Michel Marcus, May 07 2019

Formula

G.f.: 1/2 - (1/2)*sqrt(-4 - t*v + 3*t + 3*v) where t = sqrt(1 - 4*z), u = sqrt(-5 + 6*t + 4*z) and v = sqrt(-t*u + 3*t + 3*u - 4).

A307697 Number of Evolutionary Duplication-Loss-histories with n leaves of the caterpillar species tree with 3 leaves.

Original entry on oeis.org

3, 19, 159, 1565, 17022, 197928, 2413494, 30490089, 395828145, 5250493688, 70863932052, 970121212741, 13439019867456, 188038364992270, 2653560128625570, 37723174042204665, 539726553801797610, 7765849268430279390
Offset: 1

Author

Michael Wallner, Apr 22 2019

Keywords

Comments

An evolutionary history of size n is an ordered rooted (incomplete) binary tree with n leaves describing the evolution of a gene family of a species in phylogenomics. The caterpillar species tree S of size k is a binary tree with k leaves, where any left child is a leaf. Any node of the history is associated to a unique node of S, where specifically every leaf is associated to a leaf of S. A history is created by the following process (note that intermediate trees in this process may not be valid histories): Start with a root node associated to the root of S. For a given tree in the growth process, choose a leaf and perform a duplication, speciation, or (speciation-)loss event. A duplication event creates two children both associated to the same node as its parent. A speciation or (speciation-)loss event can only occur if the node is associated to an internal node in S. In that case, a speciation event creates two children associated to the children of the node in S. A (speciation-)loss event creates only a left or right child, associated to the left or right child in S, respectively.

Examples

			The caterpillar species tree with 3 leaves is equal to
      a
     / \
    b   3
   / \
  1   2
For convenience the internal nodes are labeled by a,b, and the leaves by 1,2,3. The associated nodes in the histories will be denoted by the same labels.
The a(1)=3 histories with n=1 leaf are created by the following growth process:
      a     a     a
     /     /       \
    b     b         3
   /       \
  1         2
after two loss events each.
		

Crossrefs

Caterpillar species tree sequences: A000108 (1 leaf), A307696 (2 leaves), A307698 (4 leaves), A307700 (5 leaves).

Formula

G.f.: 1/2 - (1/2)*sqrt(-4 - t*u + 3*t + 3*u) where t = sqrt(1 - 4*z) and u = sqrt(-5 + 6*t + 4*z).

A307696 Number of evolutionary duplication-loss-histories with n leaves of the caterpillar species tree with 2 leaves.

Original entry on oeis.org

2, 7, 34, 200, 1318, 9354, 69864, 541323, 4310950, 35066384, 290081932, 2432766082, 20635672664, 176727482860, 1526000459400, 13270616752680, 116124930068670, 1021736927603190, 9033726534916920, 80220639767921370, 715166816624282820, 6398357633173869600
Offset: 1

Author

Michael Wallner, Apr 22 2019

Keywords

Comments

An evolutionary history of size n is an ordered rooted (incomplete) binary tree with n leaves describing the evolution of a gene family of a species in phylogenomics. The caterpillar species tree S of size k is a binary tree with k leaves, where any left child is a leaf. Any node of the history is associated to a unique node of S, where specifically every leaf is associated to a leaf of S. A history is created by the following process (note that intermediate trees in this process may not be valid histories): Start with a root node associated to the root of S. For a given tree in the growth process, choose a leaf and perform a duplication, speciation, or (speciation-)loss event. A duplication event creates two children both associated to the same node as its parent. A speciation or (speciation-)loss event can only occur if the node is associated to an internal node in S. In that case, a speciation event creates two children associated to the children of the node in S. A (speciation-)loss event creates only a left or right child, associated to the left or right child in S, respectively.

Examples

			The caterpillar species tree with 2 leaves is equal to
    a
   / \
  1   2
For convenience the internal node is labeled by a, and the leaves by 1,2. The associated nodes in the histories will be denoted by the same labels.
The a(1)=2 histories with n=1 leaf are created by the following growth process:
    a       a
   /         \
  1           2
after one loss event each.
The a(2)=7 histories with n=2 leaves are created by the following growth process:
    a         a     a            a         a         a         a
   / \       /       \          / \       / \       / \       / \
  1   2     1         2        a   a     a   a     a   a     a   a
           / \       / \      /   /     /     \     \   \    \   /
          1   1     2   2    1   1     1       2     2   2    2 1
		

Crossrefs

Caterpillar species tree sequences: A000108 (1 leaf), A307697 (3 leaves), A307698 (4 leaves), A307700 (5 leaves).

Programs

  • PARI
    my(z='z+O('z^30)); Vec(1/2-(1/2)*sqrt(-5+6*sqrt(1-4*z)+4*z)) \\ Michel Marcus, Apr 22 2019

Formula

G.f.: 1/2 - (1/2)*sqrt(-5 + 6*sqrt(1-4*z) + 4*z).

A316666 Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.

Original entry on oeis.org

1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0

Author

Michael Wallner, Jul 10 2018

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and at most n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. It is called simple if for nodes with two pointers both point to the same node. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. See the Wallner link.
a(n) is one of two "basis" sequences for sequences of the form a(0)=a, a(1)=b, a(n) = n*a(n-1) + (n-1)*a(n-2), the second basis sequence being A096654 (with 0 appended as a(0)). The sum of these sequences is listed as A000255. - Gary Detlefs, Dec 11 2018

Crossrefs

Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288953 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of simple relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
  • Maple
    aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20);  # Gary Detlefs, Dec 11 2018
  • Mathematica
    terms = 24;
    CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
  • PARI
    Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
    

Formula

E.g.f.: (3*exp(-z)+z-2)/(1-z)^2.
a(n) ~ (3*exp(-1) - 1) * n * n!. - Vaclav Kotesovec, Jul 12 2018
a(n) = 3*round((n+2)*n!/e) - (n+2)*n!. - Gary Detlefs, Dec 11 2018
From Seiichi Manyama, Apr 25 2025: (Start)
a(n) = 3 * A000255(n) - n! - (n+1)!.
a(0) = 1, a(1) = 0; a(n) = n*a(n-1) + (n-1)*a(n-2). (End)

A288954 Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except before the first and after the last branch node on level 0.

Original entry on oeis.org

1, 1, 3, 13, 79, 555, 4605, 42315, 436275, 4894155, 60125625, 794437875, 11325612375, 172141044075, 2793834368325, 48009995908875, 874143494098875, 16757439016192875, 338309837281040625, 7157757510792763875, 158706419654857449375, 3673441093896736036875
Offset: 2

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. A branch node is a node with a left and right edge (no pointer). See the Genitrini et al. link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where in the growth process induced by the labels a maximal young leaves and non-maximal young leaves alternate except for a sequence of maximal young leaves at the begininning and at the end. A young leaf is a leaf with no left sibling. A maximal young leaf is a young leaf with maximal label. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			See A288950 and A288953.
		

Crossrefs

Cf. A288953 (variation without initial sequence).
Cf. A177145 (variation without initial and final sequence).
Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).

Programs

  • Mathematica
    terms = 22; egf = 1/(3(1-z))(1/Sqrt[1-z^2] + (3z^3 - z^2 - 2z + 2)/((1-z)(1-z^2))) + O[z]^terms;
    CoefficientList[egf, z] Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)

Formula

E.g.f.: 1/(3*(1-z))*( 1/sqrt(1-z^2) + (3*z^3-z^2-2*z+2)/((1-z)*(1-z^2)) ).

A288953 Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except after the last branch node on level 0.

Original entry on oeis.org

1, 1, 3, 10, 51, 280, 1995, 15120, 138075, 1330560, 14812875, 172972800, 2271359475, 31135104000, 471038042475, 7410154752000, 126906349444875, 2252687044608000, 43078308695296875, 851515702861824000, 17984171447178811875, 391697223316439040000
Offset: 0

Author

Michael Wallner, Jun 20 2017

Keywords

Comments

A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. The right height is the maximal number of right-edges (or right children) on all paths from the root to any leaf after deleting all pointers. A branch node is a node with a left and right edge (no pointer). See the Genitrini et al. link. - Michael Wallner, Apr 20 2017
a(n) is the number of plane increasing trees with n+1 nodes where in the growth process induced by the labels maximal young leaves and non-maximal young leaves alternate except for a sequence of maximal young leaves at the beginning. A young leaf is a leaf with no left sibling. A maximal young leaf is a young leaf with maximal label. See the Wallner link. - Michael Wallner, Apr 20 2017

Examples

			Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
  L-o-o-o-o-o-o-o-o
          | | | | |
          o o o o o.
For n=0 the a(0)=1 solution is L.
For n=1 the a(1)=1 solution is L-o.
For n=2 the a(2)=3 solutions are
L-o-o     L-o
            |
            o
  2    +   1    solutions of this shape with pointers.
		

Crossrefs

Cf. A288954 (variation with additional initial sequence).
Cf. A177145 (variation without final sequence).
Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A213527, A288950, A288952, A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).

Formula

E.g.f.: (2-z)/(3*(1-z)^2) + 1/(3*sqrt(1-z^2)).