cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268598 Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly one east step above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    concat(vector(5), Vec((4-5*x)*x^5/(1-2*x)^4 + O(x^40))) \\ Michel Marcus, Feb 08 2016

Formula

G.f.: x^5*(4 - 5*x)/(1 - 2*x)^4.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-7)*(n-4)*(n-3)*(n+3) for n>2.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. (End)

A268599 Expansion of 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 8, 60, 294, 1180, 4200, 13776, 42560, 125568, 357120, 985600, 2652672, 6988800, 18077696, 46018560, 115507200, 286326784, 701890560, 1703411712, 4096655360, 9771417600, 23132110848, 54384394240, 127049662464, 295069286400, 681574400000
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly two east steps below y = x - 1 and exactly two easts step above y = x + 1. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^6 (4 - 10 x + 7 x^2)/(1 - 2 x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
  • PARI
    concat(vector(6), Vec(2*x^6*(4-10*x+7*x^2)/(1-2*x)^5 + O(x^100))) \\ Colin Barker, Feb 08 2016

Formula

G.f.: 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.
a(n) = 2^(n-10)*(n-5)*(n-4)*(n^2+3*n+10) for n>3. - Colin Barker, Feb 08 2016

A268600 Expansion of 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

1, 2, 4, 12, 36, 132, 456, 1752, 6340, 24660, 91224, 356776, 1337896, 5250728, 19877904, 78209712, 298176516, 1175437428, 4505865144, 17789574792, 68490100536, 270739425528, 1046041377264, 4139198745552, 16039426479336, 63522770785032, 246761907761776, 977995685565072, 3807202080396240, 15098691607042000, 58884954519908896
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is even. Details can be found in Section 4.1 in Pan and Remmel's link.

Examples

			G.f. = 1 + 2*x + 4*x^2 + 12*x^3 + 36*x^4 + 132*x^5 + 456*x^6 + ... - _Michael Somos_, May 16 2022
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[1/(2 Sqrt[1 - 4x]) + 1/(4 - 2 Sqrt[1 + 4x]), {x, 0, 25}], x] (* Robert G. Wilson v, Nov 24 2016 *)
  • PARI
    my(x = 'x + O('x^40)); Vec(1/(2*sqrt(1-4*x)) + 1/(4 - 2*sqrt(1+4*x))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268601(n).
G.f.: 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: -3*n*(n-1)*a(n) +8*(n-1)*(5*n-12)*a(n-1) +4*(-28*n+73)*a(n-2) -160*(2*n-5)*(2*n-7)*a(n-3) +192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
a(n) = (-1)^n*A126984(n) + A268601(n). - Michael Somos, May 16 2022

A268601 Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).

Original entry on oeis.org

0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528
Offset: 0

Views

Author

Ran Pan, Feb 08 2016

Keywords

Comments

a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which the total number of east steps below y = x - 1 or above y = x + 1 is odd. Details can be found in Section 4.1 in Pan and Remmel's link.

Crossrefs

Programs

  • PARI
    x = 'x + O('x^30); concat(vector(2), Vec(1/(2*sqrt(1-4*x)) - 1/(4 - 2*sqrt(1+4*x)))) \\ Michel Marcus, Feb 11 2016

Formula

a(n) = binomial(2*n,n) - A268600(n).
G.f.: 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Conjecture D-finite with recurrence: 3*n*(n-1)*a(n) -8*(n-1)*(5*n-12)*a(n-1) +4*(28*n-73)*a(n-2) +160*(2*n-5)*(2*n-7)*a(n-3) -192*(2*n-5)*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
Showing 1-4 of 4 results.