A268598
Expansion of x^5*(4 - 5*x)/(1 - 2*x)^4.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 27, 120, 440, 1440, 4368, 12544, 34560, 92160, 239360, 608256, 1517568, 3727360, 9031680, 21626880, 51249152, 120324096, 280166400, 647495680, 1486356480, 3391094784, 7693402112, 17364418560, 39007027200, 87241523200, 194330492928
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
A268599
Expansion of 2*x^6*(4-10*x+7*x^2)/(1-2*x)^5.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 8, 60, 294, 1180, 4200, 13776, 42560, 125568, 357120, 985600, 2652672, 6988800, 18077696, 46018560, 115507200, 286326784, 701890560, 1703411712, 4096655360, 9771417600, 23132110848, 54384394240, 127049662464, 295069286400, 681574400000
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (10,-40,80,-80,32).
-
CoefficientList[Series[2 x^6 (4 - 10 x + 7 x^2)/(1 - 2 x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
-
concat(vector(6), Vec(2*x^6*(4-10*x+7*x^2)/(1-2*x)^5 + O(x^100))) \\ Colin Barker, Feb 08 2016
A268600
Expansion of 1/(2*f(x)) + 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Original entry on oeis.org
1, 2, 4, 12, 36, 132, 456, 1752, 6340, 24660, 91224, 356776, 1337896, 5250728, 19877904, 78209712, 298176516, 1175437428, 4505865144, 17789574792, 68490100536, 270739425528, 1046041377264, 4139198745552, 16039426479336, 63522770785032, 246761907761776, 977995685565072, 3807202080396240, 15098691607042000, 58884954519908896
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 12*x^3 + 36*x^4 + 132*x^5 + 456*x^6 + ... - _Michael Somos_, May 16 2022
-
CoefficientList[ Series[1/(2 Sqrt[1 - 4x]) + 1/(4 - 2 Sqrt[1 + 4x]), {x, 0, 25}], x] (* Robert G. Wilson v, Nov 24 2016 *)
-
my(x = 'x + O('x^40)); Vec(1/(2*sqrt(1-4*x)) + 1/(4 - 2*sqrt(1+4*x))) \\ Michel Marcus, Feb 11 2016
A268601
Expansion of 1/(2*f(x)) - 1/(4 - 2*g(x)), where f(x) = sqrt(1 - 4*x) and g(x) = sqrt(1 + 4*x).
Original entry on oeis.org
0, 0, 2, 8, 34, 120, 468, 1680, 6530, 23960, 93532, 348656, 1366260, 5149872, 20238696, 76907808, 302903874, 1158168792, 4569270156, 17555689008, 69356428284, 267518448912, 1058057586456, 4094231982048, 16208177203764, 62887835652720, 249156625186328, 968943740083040, 3841488520364200, 14968574892499040, 59379627044952528
Offset: 0
Showing 1-4 of 4 results.
Comments